激光定向能量沉积Al-Mg-Sc-Zr修复5083-H112铝合金的组织和性能
Microstructure and properties of repaired 5083-H112 aluminum alloy by laser direct energy deposited Al-Mg-Sc-Zr
查看参考文献25篇
文摘
|
激光定向能量沉积增材修复技术具有时间短、效率高、成本低、力学性能好等优点,具有很大的发展潜力。采用Al-7.5Mg-0.3Sc-0.28Zr作为修复材料对轨道交通用5083-H112铝合金进行激光修复实验,得到了致密、无缺陷的修复试样,并对其组织和性能进行研究,探讨了激光修复铝合金的可行性。结果表明,熔合线附近过渡区可划分为修复区、部分熔化区、热影响区和母材。修复区为完全等轴晶,由平均晶粒尺寸为4.95 μm的细晶带和18.34 μm的粗晶区组成。从修复区到部分熔化区再到热影响区的过渡区域,Al元素含量逐渐升高,Mg元素含量逐渐下降,硬度逐渐下降,修复后母材未被软化。由于激光增材制造技术的快速凝固,在熔合线附近的细晶带有较大的应力集中,由于较小的热输入在部分熔化区、热影响区的残余应力较小。修复试样的屈服强度为(152±2) MPa,为母材的89.4%;抗拉强度为(305±5) MPa,为母材抗拉强度的100%;伸长率为(15.5±0.5)%,为母材的85.2%;断裂发生在强度较弱的母材。高性能的激光修复铝合金是可实现的,具有广泛的应用前景。 |
其他语种文摘
|
Laser repair technology has the advantages of short time, high efficiency, low cost and good mechanical properties, and has great development potential. Al-7.5Mg-0.3Sc-0.28Zr was used as the repair material to conduct laser repair experiments on 5083-H112 aluminum alloy used in rail transit, and a dense and defect-free repair sample was obtained. The microstructure and properties of the sample were studied, and the feasibility of laser repair of aluminum alloy was discussed. The results show that the transition zone near the fusion line can be divided into repair zone, partial melting zone, heat affected zone and base metal. The grains in the repaired area are completely equiaxed, consisting of a fine-grained band with an average grain size of 4.95 μm and a coarse-grained region of 18.34 μm respectively. In the transition area from the repair zone to the partial melting zone and then to the heat affected zone, the content of Al element gradually increases, the content of Mg element gradually decreases, and the hardness decreases gradually. The heat-affected zone and the base metal are not softened after the repair. Due to the rapid solidification of laser additive manufacturing technology, the fine-grain band near the fusion line has larger stress concentration, and the residual stress in the heat affected zone and partial melting zone is small due to the small heat input. The yield strength of the repaired sample of (152±2) MPa is 89.4% of the base metal, the tensile strength of(305±5) MPa is 100% of the base metal, and the elongation rate of (15.5±0.5)% is 85.2% of the base metal. Fracture occurs in the weaker base metal. Laser repair of aluminum alloys is feasible and has broad application prospects. |
来源
|
材料工程
,2024,52(2):40-49 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000185
|
关键词
|
5083-H112
;
激光定向能量沉积
;
激光修复铝合金
;
过渡区
;
显微组织
;
拉伸性能
|
地址
|
1.
中南大学, 粉末冶金国家重点实验室, 长沙, 410083
2.
浙江力博实业股份有限公司, 浙江, 绍兴, 312000
3.
中车工业研究院有限公司, 北京, 100070
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
湖南省重点研发计划
;
山东省自然科学基金
|
文献收藏号
|
CSCD:7679697
|
参考文献 共
25
共2页
|
1.
王洪仁. 5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究.
电化学,2003,9(1):60-65
|
CSCD被引
8
次
|
|
|
|
2.
缪唐军.
船用5083铝合金焊接工艺研究,2019
|
CSCD被引
1
次
|
|
|
|
3.
王富强. 地铁车辆铝合金车体牵枕缓组件裂纹修复及修后效果评价.
铁道机车车辆,2019,39(增刊1):80-85
|
CSCD被引
1
次
|
|
|
|
4.
Vilar R. Repair and manufacturing of single crystal Ni-based superalloys components by laser powder deposition-areview.
Journal of Laser Applications,2015,27(Suppl 1):17004
|
CSCD被引
12
次
|
|
|
|
5.
杨义成.
燃气轮机叶片激光增材修复基础研究,2017
|
CSCD被引
7
次
|
|
|
|
6.
Kurnsteiner P. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys.
Additive Manufacturing,2020,32:100910
|
CSCD被引
20
次
|
|
|
|
7.
姚聪. 激光送粉增材制造Fe-Mn-Si基形状记忆合金组织与性能.
中南大学学报(自然科学版),2020,51(11):3081-3087
|
CSCD被引
7
次
|
|
|
|
8.
李瑞迪. 送粉式激光增材制造Al-Mg-Sc-Zr合金的微观组织与力学性能.
中南大学学报(自然科学版),2020,51(11):3055-3062
|
CSCD被引
1
次
|
|
|
|
9.
Mohammadreza L D. A reviewon additive/subtractive hybrid manufacturing of directed energy deposition (DED) process.
Advanced Powder Materials,2022,1(4):100054
|
CSCD被引
1
次
|
|
|
|
10.
宫新勇.
激光熔覆沉积修复TC11钛合金叶片的基础问题研究,2014
|
CSCD被引
4
次
|
|
|
|
11.
Oh W J. Repairing additivemanufactured 316L stainless steel using direct energy deposition.
Optics & Laser Technology,2019,117:6
|
CSCD被引
6
次
|
|
|
|
12.
Sui S. The tensile deformation behaviorof laser repaired Inconel 718 with a non-uniform microstructure.
Materials Science and Engineering: A,2017,688:480-487
|
CSCD被引
14
次
|
|
|
|
13.
Shrestha S. Analysis of microstructure and mechanical properties of additive repaired Ti-6Al-4V by direct energy deposition.
Materials Science and Engineering: A,2020,806(6):140604
|
CSCD被引
1
次
|
|
|
|
14.
陈永城. 激光熔化沉积4045铝合金显微组织及显微硬度.
中国激光,2015,42(3):100-106
|
CSCD被引
5
次
|
|
|
|
15.
Zhang J L. Towards understanding metallurgical defect formation of selective laser meltedwrought aluminum alloys.
Advanced Powder Materials,2022,1(4):100035
|
CSCD被引
4
次
|
|
|
|
16.
王小艳. AlSi12粉激光成形修复7050铝合金组织.
中国激光,2009,36(6):1585-1590
|
CSCD被引
14
次
|
|
|
|
17.
郭永利. 铝合金的激光熔覆修复.
中国激光,2008,35(2):303
|
CSCD被引
26
次
|
|
|
|
18.
薛蕾. 激光成形修复ZL104合金的组织与性能研究.
中国表面工程,2010,23(1):97-98
|
CSCD被引
7
次
|
|
|
|
19.
钦兰云. 激光沉积修复ZL114A铝合金组织和力学性能分析.
中国激光,2016,43(12):1202009
|
CSCD被引
4
次
|
|
|
|
20.
Li R D. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting:crack-inhibitingand multiple strengthening mechanisms.
Acta Materialia,2020,193:83-98
|
CSCD被引
89
次
|
|
|
|
|