帮助 关于我们

返回检索结果

镍基高温合金增材制造研究进展
Advances in additive manufacturing of nickel-based high-temperature alloys

查看参考文献110篇

祝国梁 1,2 *   罗桦 1   贺戬 1   田雨生 1   卫东雨 1   谭庆彪 1   孔德成 1  
文摘 镍基高温合金因其优异的高温强度及耐腐蚀、抗氧化性能而备受关注,被广泛应用于航空航天等领域。本文对增材制造镍基高温合金的制备方法、常见牌号以及合金的组织与性能进行了综述,总结了当前存在的问题,提出了未来值得探索的研究领域。金属增材制造技术制备的镍基高温合金具有良好性能,能实现复杂构件精密成形,且制备过程中材料浪费少,有望成为未来航空航天等领域中镍基高温合金构件的重要制备工艺。常见的镍基高温合金增材制造方法有粉末床熔化、定向能量沉积和电弧增材制造等,粉末床熔化被广泛用于制造高精度和复杂零件,但制造速度相对较慢,且设备和材料成本较高。定向能量沉积自由度和灵活性更高,可用于制备功能性梯度材料,但精度较低。电弧增材制造具有较低的设备成本和材料成本,适用于大型零件的快速制造,但其制备的合金表面粗糙度较差,需要进行额外的加工或后处理。在增材制造过程中被广泛研究的镍基高温合金包含IN625,Hastelloy X等固溶强化型和IN718,CM247LC, IN738LC等沉淀强化型高温合金。与传统的铸造和锻造方法相比,增材制造独特的逐层成型、快冷快热的制备过程带来了粗大的柱状晶粒组织和大量细小晶粒的独特微观组织,还形成了独特的熔池组织及位错胞结构。但是,通过增材制造得到的合金一般还需要进行热处理,对晶粒组织、析出相等进行调控,从而影响合金的力学性能。此外,增材制造镍基高温合金的力学性能还与具体制备方法和合金种类有关。尽管目前增材制造已被广泛用于镍基高温合金的制备,但仍面临组织与性能存在各向异性、高性能合金开裂敏感性高以及缺乏相应的规范和标准等问题,将来需要在热处理、专用合金的定制与开发、探索工艺-结构-功能关系以及计算建模等方面深入探索。
其他语种文摘 Nickel-based superalloys have attracted significant attention due to their outstanding hightemperature strength, corrosion resistance, and oxidation resistance, and are widely used in aerospace and other fields. This article provides a comprehensive review of the preparation methods, common grades, and microstructure and properties of additive manufactured nickel-based superalloys, summarizes the current issues, and proposes future areas for exploration. Nickel-based superalloys prepared by metal additive manufacturing technology have excellent performance, can achieve precise forming of complex components, and have minimal material waste during the manufacturing process. They are expected to become an important production process for nickel-based superalloys components in fields such as aerospace. Common methods for additive manufacturing of nickel-based superalloys include laser powder bed melting, directed energy deposition, and arc additive manufacturing. Powder bed melting is widely used for manufacturing high-precision and complex parts, but it has a relatively slow manufacturing speed and higher equipment and material costs. Directed energy deposition has higher degrees of freedom and flexibility and can be used to prepare functional gradient materials, but it has lower accuracy. Arc additive manufacturing has lower equipment and material costs and is suitable for rapid manufacturing of large parts, but the surface roughness of the alloy produced by this method is poor and requires additional processing or post-treatment. Nickel-based superalloys widely studied in the additive manufacturing process include IN625, Hastelloy X, and other solid solution strengthened alloys, as well as IN718, CM247LC, IN738LC, and other precipitation strengthened superalloys. Compared with traditional casting and forging methods, the unique layer-by-layer forming and rapid cooling and heating process of additive manufacturing result in a coarse columnar grain structure and a unique microstructure with a large number of fine grains. It also forms unique melt pool structures and dislocation cell structures. However, the alloys obtained by additive manufacturing generally require heat treatment to control grain structure and precipitated phases, which affects the mechanical properties of the alloy. In addition, the mechanical properties of additive manufactured nickel-based superalloys are also related to specific preparation methods and alloy types. Although additive manufacturing has been widely used in the preparation of nickel-based superalloys, there are still issues such as anisotropy in microstructure and properties, high sensitivity to alloy cracking, and a lack of corresponding specifications and standards. In the future, further exploration is needed in areas such as heat treatment, customization and development of specialized alloys, investigation of the process-structure-function relationship, and computational modeling.
来源 材料工程 ,2024,52(2):1-15 【核心库】
DOI 10.11868/j.issn.1001-4381.2023.000676
关键词 增材制造 ; 镍基高温合金 ; 微观组织 ; 力学性能
地址

1. 上海交通大学材料科学与工程学院, 上海市先进高温材料及其精密成形重点实验室, 上海, 200240  

2. 上海交通大学, 金属基复合材料国家重点实验室, 上海, 200240

语种 中文
文献类型 综述型
ISSN 1001-4381
学科 金属学与金属工艺
基金 国家自然科学基金项目
文献收藏号 CSCD:7679694

参考文献 共 110 共6页

1.  Wang X. Review on powder-bed laseradditive manufacturing of Inconel 718 parts. Proceedings of the Institution of Mechanical Engineers Part B,2017,231(11):1890-1903 CSCD被引 11    
2.  Ngo T D. Additivemanufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B,2018,143:172-196 CSCD被引 221    
3.  Tofail S A M. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials today,2018,21(1):22-37 CSCD被引 46    
4.  Popovich A. Metal powder additive manufacturing. New Trends in 3D Printing,2016 CSCD被引 1    
5.  Dev Singh D. Powderbed fusion process: a brief review. Materials Today: Proceedings,2021,46:350-355 CSCD被引 3    
6.  Dhinakaran V. Wire arc additive manufacturing (WAAM) process ofnickel based superalloys-a review. Materials Today: Proceedings,2020,21:920-925 CSCD被引 10    
7.  Pragana J P M. Hybrid metal additive manufacturing: a state-of-the-art review. Advances in Industrial and Manufacturing Engineering,2021,2:100032 CSCD被引 7    
8.  吴楷. 激光增材制造镍基高温合金研究进展. 钢铁研究学报,2017(12):953-959 CSCD被引 13    
9.  Yuan K. Influence of process parametersand heat treatments on the microstructures and dynamic mechanicalbehaviors of Inconel 718 superalloy manufactured by laser metal deposition. Materials Science and Engineering: A,2018,721:215-225 CSCD被引 18    
10.  Koike R. Evaluationfor mechanical characteristics of Inconel625-SUS316L joint produced with direct energy deposition. Procedia Manufacturing,2017,14:105-110 CSCD被引 1    
11.  Mcandrew A R. Interpass rolling of Ti-6Al-4V wire+ arc additively manufactured features for microstructural refinement. Additive Manufacturing,2018,21:340-349 CSCD被引 24    
12.  Sangid M D. Role ofheat treatment and build orientation in the microstructure sensitivedeformation characteristics of IN718 produced via SLM additivemanufacturing. Additive Manufacturing,2018,22:479-496 CSCD被引 9    
13.  Stevens E L. Variation of hardness, microstructure, and Laves phase distribution in direct laserdeposited alloy 718 cuboids. Materials & design,2017,119:188-198 CSCD被引 11    
14.  Seow C E. Wire+arc additivelymanufactured Inconel 718: effect of post-deposition heat treatments on microstructure and tensile properties. Materials & Design,2019,183:108157 CSCD被引 5    
15.  Kruth J P. Progress in additive manufacturing and rapid prototyping. CIRP Annals,1998,47(2):525-540 CSCD被引 48    
16.  Karia M C. Selective lasermelting of Inconel super alloy-a review. AIP Conference Proceedings. 1859,2017:020013 CSCD被引 1    
17.  Yap C Y. Review of selectivelaser melting: materials and applications. Applied Physics Reviews,2015,2(4):041101 CSCD被引 103    
18.  Chen D. Characteristics of metalspecimens formed by selective laser melting: a state-of-the-art review. Journal of Materials Engineering and Performance,2021,30(10):7073-7100 CSCD被引 5    
19.  Guo N. Additive manufacturing: technology, applications and research needs. Frontiers of Mechanical Engineering,2013,8(3):215-243 CSCD被引 58    
20.  Guoqing W. Researchstatus and development trend of laser additive manufacturing technology. 2017 4th International Conference on Information Science and Control Engineering (ICISCE),2017:1210-1213 CSCD被引 1    
引证文献 3

1 江天兴 聚合物转化超高温陶瓷及其复合材料研究进展 硅酸盐学报,2024,52(9):2827-2846
CSCD被引 1

2 李龙飞 基于EBM增材制造CoNi基高温合金组织与力学性能 航空材料学报,2024,44(2):125-132
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号