可可毛色二孢菌全基因组非经典分泌蛋白的预测及致病相关性分析
Genome-wide prediction and pathogenic analysis of non-classical secreted proteins of Lasiodiplodia theobromae
查看参考文献42篇
文摘
|
可可毛色二孢(Lasiodiplodia theobromae)是一种世界性分布的重要植物病原真菌,可侵染500余种木本植物,危害严重。分泌蛋白在病原菌的侵入、扩展、定殖以及病害发生过程中发挥着重要作用,目前有关经典分泌蛋白的研究较多,而对于非经典分泌蛋白在植物病原真菌致病过程中的作用研究较少。本研究基于L. theobromae全基因组序列,通过生物信息学预测,得到238个候选非经典分泌蛋白编码基因。基因功能预测及富集分析结果显示,这些基因在碳硫裂解酶活性(Carbon-sulfur lyase activity)通路中被富集。基于PHI-base病原-宿主互作数据库的注释信息,其中有15个非经典分泌蛋白编码基因可能参与了L. theobromae的致病过程。ApoplastP软件预测结果显示,其中4个定位于植物细胞质外体,11个定位于植物细胞内。经反转录荧光定量PCR(RT-qPCR)分析证实,这些候选关键非经典分泌蛋白编码基因的转录水平在葡萄枝条组织诱导条件下发生了显著的变化。根据本研究结果,非经典分泌蛋白在葡萄-L. theobromae互作体系中可能发挥着重要作用,这为深入解析非经典分泌蛋白对L. theobromae致病力影响的机制奠定了基础。 |
其他语种文摘
|
Lasiodiplodia theobromae is an important plant pathogenic fungus, infecting more than 500 species of woody plants and causing serious damages worldwide. The secreted proteins of pathogenic fungi play important roles in pathogen invasion, expansion, and colonization in plants. Although there are more reports on the involvement of classical secreted proteins in fungal pathogenicity, the roles of non-classical secreted proteins in the pathogenesis of plant pathogenic fungi have rarely been investigated. In this study, 238 candidate non-classical secreted protein-coding genes were obtained by bioinformatic prediction based on the whole genome sequence of L. theobromae. Gene functional prediction and GO enrichment analysis showed that these genes are enriched in the carbon-sulfur lyase activity pathway. The annotation results based on PHI-base showed that 15 non-classical protein-coding genes might be related to the pathogenicity of L. theobromae. Predication of subcellular location using ApoplastP showed that 4 of them were located in plant apoplast and 11 were located in plant proplastids. Reverse transcription quantitative PCR (RT-qPCR) analysis results further verified that the transcriptional expression levels of the above candidate non-classical secreted protein-coding genes were significantly changed after treatment with grapevine branch tissues, indicating that these non-classical secreted proteins may play important roles in grapevine-L. theobromae interaction. The results lay a foundation for further understanding of the pathogenic mechanism of non-classical secreted proteins of L. theobromae. |
来源
|
植物病理学报
,2024,54(1):102-115 【核心库】
|
DOI
|
10.13926/j.cnki.apps.001625
|
关键词
|
可可毛色二孢菌
;
葡萄溃疡病
;
非经典分泌蛋白
;
生物信息学预测
;
功能分析
|
地址
|
北京市农林科学院植物保护研究所, 北方果蔬病虫害绿色防控北京市重点实验室;;农业农村部北方果蔬有害生物绿色防控重点实验室(部省共建), 北京, 100097
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
北京市农林科学院科技创新能力建设专项
;
国家葡萄产业技术体系
|
文献收藏号
|
CSCD:7679078
|
参考文献 共
42
共3页
|
1.
Li Z. Characterization of phytotoxin and secreted proteins identifies of Lasiodiplodia theobromae, causes of peach gummosis.
Fungal Biology,2019,123:51-58
|
CSCD被引
1
次
|
|
|
|
2.
Bertsch C. Grapevine trunk diseases: complex and still poorly understood.
Plant Pathology,2013,62(2):243-265
|
CSCD被引
7
次
|
|
|
|
3.
Mondello V. Grapevine trunk diseases: a review of fifteen years of trials for their control with chemicals and biocontrol agents.
Plant Disease,2018,102(7):1189-1217
|
CSCD被引
5
次
|
|
|
|
4.
Nimchuk Z. Recognition and response in the plant immune system.
Annual Review of Genetics,2003,37(1):579-609
|
CSCD被引
23
次
|
|
|
|
5.
Rodriguez-Moreno L. Tools of the crook-infection strategies of fungal plant pathogens.
The Plant Journal,2018,93(4):664-674
|
CSCD被引
4
次
|
|
|
|
6.
Giraldo M C. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae.
Nature Communications,2013,4(6):1996
|
CSCD被引
28
次
|
|
|
|
7.
Khang C H. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement.
Plant Cell,2010,22(4):1388-1403
|
CSCD被引
34
次
|
|
|
|
8.
Zhang S J. Effectors and effector delivery in Magnaporthe oryzae.
PLoS Pathogens,2014,10(1):e1003826
|
CSCD被引
13
次
|
|
|
|
9.
Stotz H U. Effector-triggered defence against apoplastic fungal pathogens.
Trends in Plant Science,2014,19(8):491-500
|
CSCD被引
7
次
|
|
|
|
10.
Stephan W. The fungal-specific β-glucan-binding lectin FGB1 alters cellwall composition and suppresses glucan-triggered immunity in plants.
Nature Communications,2016,7(1):13188
|
CSCD被引
1
次
|
|
|
|
11.
Christoph H. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.
PLoS Pathogens,2012,8(5):e1002684
|
CSCD被引
22
次
|
|
|
|
12.
Mueller A N. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2.
PLoS Pathogens,2013,9(2):e1003177
|
CSCD被引
13
次
|
|
|
|
13.
Shi X T. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel.
PLoS Pathogens,2018,14(1):e1006878
|
CSCD被引
30
次
|
|
|
|
14.
Auron P E. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA.
Proceedings of the National Academy of Sciences of the United States of America,1984,81(24):7907-7911
|
CSCD被引
5
次
|
|
|
|
15.
Rubartelli A. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence.
The EMBO Journal,1990,9(5):1503-1510
|
CSCD被引
9
次
|
|
|
|
16.
Ridout C J. Multiple axirulenge paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance.
Plant Cell,2006,18(9):2402-2414
|
CSCD被引
16
次
|
|
|
|
17.
Liu T L. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis.
Nature Communications,2014,5(1):4686
|
CSCD被引
43
次
|
|
|
|
18.
He Q G.
Functional analysis of two non-classically secreted effector proteins EqCmu and EqPDT of rubber powdery mildew fungus (in Chinese),2020
|
CSCD被引
1
次
|
|
|
|
19.
Delphine V. The multiple facets of plant-fungal interactions revealed through plant and fungal secretomics.
Frontiers in Plant Science,2019,10:1626
|
CSCD被引
1
次
|
|
|
|
20.
Sperschneider J. ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning.
New Phytologist,2017,217(4):1764-1778
|
CSCD被引
5
次
|
|
|
|
|