植物病原真菌抑制几丁质触发植物免疫反应的策略
Strategies of plant pathogenic fungi to inhibit chitin-triggered plant immune responses
查看参考文献59篇
文摘
|
几丁质是真菌细胞壁的重要成分,其晶体结构使真菌细胞壁具有一定的强度和硬度,对植物病原真菌侵染结构和侵染菌丝的形成具有重要作用。在植物与真菌互作过程中,植物分泌的几丁质酶可以降解真菌的几丁质产生几丁质寡糖,几丁质寡糖作为一种病原相关分子模式(PAMP),能够被植物细胞膜上的几丁质受体识别进而触发植物免疫反应。植物病原真菌为了成功侵染植物进化出了多种策略抑制几丁质触发的植物免疫反应,具体而言,植物病原真菌分泌大量的效应蛋白、多糖或几丁质脱乙酰化酶、几丁质酶、蛋白酶等效应子抑制植物的免疫反应。这些效应子被分泌到植物细胞质外体或细胞内部破坏植物免疫系统,促进病原真菌在植物细胞中获取营养物质以供其定殖和生长发育。本文综述了植物识别几丁质的分子机制以及植物病原真菌抑制几丁质触发植物免疫反应的主要策略,并对今后的研究前景进行了展望。 |
其他语种文摘
|
Chitin is an important component of fungal cell wall. It imparts strength and rigidity to fungal cell wall due to its crystalline nature. Chitin plays an important role in infection-related morphogenesis of phytopathogenic fungi, such as the infection structure and the infection hyphae. During the interaction between plants and plant pathogenic fungi, chitinases secreted by plants can degrade chitin to chitin oligomers. As a pathogen-associated molecular pattern (PAMP), chitin oligomer can be recognized by the membrane-located chitin receptors to stimulate plant immune responses. To successfully infect plants, plant pathogenic fungi have evolved a variety of strategies to inhibit the chitin-triggered plant immunity responses. Specifically, plant pathogenic fungi secrete many proteins such as effector proteins, polysaccharides or chitin deacetylases, chitinases and proteases to inhibit the plant defense responses. These proteins are secreted into the apoplast or inside the cell to destroy the plant immune system, which promotes the nutrient acquisition, colonization, growth, and development of the pathogenic fungi. This review summarizes the molecular mechanism of chitin recognition in plants and the main strategies to inhibit chitin-triggered plant immune responses of plant pathogenic fungi. We also discuss future research trends in this field. |
来源
|
植物病理学报
,2024,54(1):15-25 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000870
|
关键词
|
几丁质
;
植物免疫
;
效应蛋白
;
几丁质脱乙酰化酶
;
几丁质酶
|
地址
|
西北农林科技大学植物保护学院, 杨凌, 712100
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
中国博士后科学基金第15批特别资助
|
文献收藏号
|
CSCD:7679070
|
参考文献 共
59
共3页
|
1.
Jones J D G. The plant immune system.
Nature,2006,444(7117):323-329
|
CSCD被引
703
次
|
|
|
|
2.
Andrea A G. Biotechnological concepts for improving plant innate immunity.
Current Opinion in Biotechnology,2010,21(2):204-210
|
CSCD被引
4
次
|
|
|
|
3.
Kaku H. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor.
Procee-dings of the National Academy of Sciences of the United States of America,2006,103(29):11086-11091
|
CSCD被引
77
次
|
|
|
|
4.
Chaves M A D. Fungicide resistance in Fusarium graminearum species complex.
Current Microbiology,2022,79(2):62
|
CSCD被引
1
次
|
|
|
|
5.
Tudi M. Agriculture development, pesticide application and its impact on the environment.
International Journal of Environmental Research and Public Health,2021,18(3):1112
|
CSCD被引
23
次
|
|
|
|
6.
Plaza V. Breakpoint: Cell wall and glycoproteins and their crucial role in the phytopathogenic fungi infection.
Current Protein and Peptide Science,2020,21(3):227-244
|
CSCD被引
1
次
|
|
|
|
7.
Islem Y. Chitin and chitosan preparation from marine sources, structure, properties and applications.
Marine Drugs,2015,13(3):1133-1174
|
CSCD被引
48
次
|
|
|
|
8.
Elieh Ali Komi D. Chitin and its effects on inflammatory and immune responses.
Clinical Reviews in Allergy and Immunology,2017,54(2):213-223
|
CSCD被引
8
次
|
|
|
|
9.
Bishop J G. Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution.
Proceedings of the National Academy of Sciences of the United States of America,2000,97(10):5322-5327
|
CSCD被引
14
次
|
|
|
|
10.
Shibuya N. Oligosaccharide signalling for defence responses in plant.
Physiological and Molecular Plant Pathology,2001,59(5):223-233
|
CSCD被引
43
次
|
|
|
|
11.
Stephen T C. Host-microbe interactions: Shaping the evolution of the plant immune response.
Cell,2006,124(4):803-814
|
CSCD被引
2
次
|
|
|
|
12.
Jiang C. LysM domains and its roles in plant-fungus interactions (in Chinese).
Chinese Bulletin of Botany,2014,49(2):221-228
|
CSCD被引
1
次
|
|
|
|
13.
Shinya T. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants.
Plant and Cell Physiology,2012,53(10):1696-1706
|
CSCD被引
16
次
|
|
|
|
14.
Hayafune M. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization.
Proceedings of the National Academy of Sciences of the United States of America,2014,111(3):E404-E413
|
CSCD被引
24
次
|
|
|
|
15.
Liu T. Chitin-induced dimerization activates a plant immune receptor.
Science,2012,336(6085):1160-1164
|
CSCD被引
66
次
|
|
|
|
16.
Ao Y. OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity.
The Plant Journal,2014,80(6):1072-1084
|
CSCD被引
25
次
|
|
|
|
17.
Shimizu T. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice.
The Plant Journal,2010,64(2):204-214
|
CSCD被引
64
次
|
|
|
|
18.
Miya A. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis.
Proceedings of the National Academy of Sciences of the United States of America,2007,104(49):19613-19618
|
CSCD被引
85
次
|
|
|
|
19.
Wan J. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.
The Plant Cell,2008,20(2):471-481
|
CSCD被引
57
次
|
|
|
|
20.
Wan J. LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis.
Plant Physiology,2012,160(1):396-406
|
CSCD被引
19
次
|
|
|
|
|