搅拌摩擦沉积增材2219铝合金组织及性能
Microstructure and properties of 2219 aluminum alloy fabricated via additive friction stir deposition
查看参考文献19篇
文摘
|
在主轴转速250~350 r/min、横向移动速度50~150 mm/min工艺参数下进行2219-T87铝合金搅拌摩擦沉积增材(additive friction stir deposition,AFSD)实验,探究工艺参数与多层热循环对沉积层宏观成形、微观组织和力学性能的影响。结果表明:在主轴转速250 r/min,移动速度100 mm/min工艺参数下可获得成形良好的单道16层增材试样。增材区晶粒尺寸发生显著细化,在4~6 μm之间,细小等轴晶组织取代沉积棒料粗大的无规则晶粒组织。增材试样发生剧烈的动态再结晶,整体再结晶晶粒在80%以上,试样底部(第1层)受到多次热循环影响,再结晶晶粒达到91.8%。增材区域织构基本由Cube、Copper、P和RtB四种再结晶织构以及S、T和Brass织构构成。增材试样的硬度和抗拉强度相比于沉积棒料都明显降低,其中,第16层沉积层硬度最大为80HV,约为沉积棒料母材的55.6%;第1~8层沉积层硬度均匀在60HV。增材区水平(longitudinal direction, LD)方向第9~16层和1~8层的平均抗拉强度分别为243.0 MPa和219.3 MPa,约为母材的60.0%和52.9%;平均伸长率为19.4%和24.5%,分别约为母材的181.1%和229.0%。增材试样LD方向断裂模式均为韧性断裂。 |
其他语种文摘
|
The additive friction stir deposition(AFSD) experiment of 2219 aluminum alloy was conducted under the process parameters of the spindle rotational speed of 250-350 r/min and transverse speed of 50-150 mm/min,the effects of varying process parameters and multilayer thermal cycling on the macroscopic forming of deposited materials, microstructures and mechanical properties were investigated. The results show that well-formed single-pass 16-layer additive specimens can be successfully obtained under the process parameters of the spindle rotational speed of 250 r/min and the traverse speed of 100 mm/min. The grain size in the additive zone undergoes significant refinement, ranging from 4 to 6 μm, and the fine equiaxial crystal organization replaces the coarse irregular grain organization characteristic of the feed rod. The additive specimen undergoes intense dynamic recrystallization, with overall recrystallized grains above 80%,and the bottom of the specimen(the 1st Layer)is subjected to multiple thermal cycles, with recrystallized grains reaching 91.8%. The texture of the additive zone basically consists of four recrystallized textures(Cube, Copper, P and RtB), as well as S, Brass and T textures. Significant softening of the hardness and tensile strength of the additive specimens occurs. The maximum hardness of the 16th layer is 80HV,which is about 55.6% of the base material of the feed rod,the hardness of the 1st-8th layers is uniformly 60HV. The average tensile strength of Layer 9-16 and 1-8 in the LD(longitudinal direction) direction of the additive zone is 243.0 MPa and 219.3 MPa respectively, which is about 60.0% and 52.9% of the base material, the average elongation is 19.4% and 24.5%, which is about 181.1% and 229.0% of the base material respectively. The fracture modes in the LD direction of the additive specimens are all ductile fracture. |
来源
|
航空材料学报
,2024,44(1):152-162 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000158
|
关键词
|
搅拌摩擦沉积增材
;
2219-T87铝合金
;
微观组织
;
力学性能
|
地址
|
1.
天津大学材料科学与工程学院, 天津, 300354
2.
上海航天精密机械研究所, 上海, 201600
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
上海航天精密机械研究所产学研合作基金
;
国家自然科学基金
|
文献收藏号
|
CSCD:7676473
|
参考文献 共
19
共1页
|
1.
Du B. Effects of supporting plate hole and welding force on weld formation and mechanical property of friction plug joints for AA2219-T87 friction stir welds.
Welding in the World,2019,63(4):989-1000
|
CSCD被引
5
次
|
|
|
|
2.
Lin T C. Aluminum with dispersed nanoparticles by laser additive manufacturing.
Nature Communications,2019,10(1):1-9
|
CSCD被引
17
次
|
|
|
|
3.
Zhou L. Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion.
Additive Manufacturing,2019,28:485-496
|
CSCD被引
15
次
|
|
|
|
4.
Sridharan N. Rationalization of anisotropic mechanical properties of Al-6061 fabricated using ultrasonic additive manufacturing.
Acta Materialia,2016,117:228-237
|
CSCD被引
6
次
|
|
|
|
5.
Wei J. Evolution of microstructure and properties in 2219 aluminum alloy produced by wire arc additive manufacturing assisted by interlayer friction stir processing.
Materials Science and Engineering: A,2023,868:144794
|
CSCD被引
4
次
|
|
|
|
6.
Rivera O G. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing.
Materials Science and Engineering:A,2017,694:1-9
|
CSCD被引
16
次
|
|
|
|
7.
Tang W. Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al-Mg-Si alloy based on friction and extrusion.
International Journal of Minerals, Metallurgy and Materials,2022,29(9):1755-1769
|
CSCD被引
1
次
|
|
|
|
8.
Tang W. Effect of rotation speed on microstructure and mechanical anisotropy of Al-5083 alloy builds fabricated by friction extrusion additive manufacturing.
Materials Science and Engineering: A,2022,860:144237
|
CSCD被引
5
次
|
|
|
|
9.
Tang W. Interfacial grain structure,texture and tensile behavior of multilayer deformation-based additively manufactured Al 6061 alloy.
Materials Characterization,2023,196:112646
|
CSCD被引
2
次
|
|
|
|
10.
Luo T. Microstructure heterogeneity and mechanical properties of Mg-Gd-Y-Zr alloy fabricated by force-controlled additive friction stir deposition.
Materials Letters,2023,340:134164
|
CSCD被引
2
次
|
|
|
|
11.
唐文珅. 工艺参数对铝合金摩擦挤压增材组织及性能的影响.
航空材料学报,2022,42(1):59-67
|
CSCD被引
6
次
|
|
|
|
12.
杨新岐. 高强铝合金固相摩擦挤压增材制造工艺及力学性能.
金属加工,2022(6):1-9
|
CSCD被引
1
次
|
|
|
|
13.
Griffiths R J. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: process-microstructure linkages.
Materialia,2021,15:100967
|
CSCD被引
11
次
|
|
|
|
14.
Phillips B J. Microstructural and mechanical characterization of additive friction stir-deposition of aluminum alloy 5083 effect of lubrication on material anisotropy.
Materials,2021,14(21):6732
|
CSCD被引
4
次
|
|
|
|
15.
Gu C. Texture features and strengthening mechanisms in welding nugget zone of SSFSWed thick-plate Al-Li alloy joint.
Materials Science and Engineering:A,2022,848(135):143459
|
CSCD被引
2
次
|
|
|
|
16.
田超博. 基于摩擦挤压增材制造的单道多层6061铝合金组织特征与力学性能.
稀有金属材料与工程,2022,51(8):2870-2880
|
CSCD被引
3
次
|
|
|
|
17.
Anderson-Wedge K. Characterization of the fatigue behavior of additive friction stir-deposition AA2219.
International Journal of Fatigue,2021,142:105951
|
CSCD被引
9
次
|
|
|
|
18.
Sitdikov O. Microstructure behavior of Al-Mg-Sc alloy processed by ECAP at elevated temperature.
Acta Materialia,2008,56(4):821-834
|
CSCD被引
11
次
|
|
|
|
19.
Rivera O G. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition.
Materials Science and Engineering: A,2018,724:547-558
|
CSCD被引
12
次
|
|
|
|
|