GH4169合金激光选区熔化成形工艺与缺陷特征的相关性
Correlation of forming process and defect characteristics of selective laser melted GH4169 alloy
查看参考文献21篇
文摘
|
通过改变激光选区熔化成形工艺,即激光功率和扫描速度,制备多个GH4169试样。采用金相法观察显微组织及其内部缺陷的形貌与分布,采用X射线断层成像获得试样孔隙率,并统计分析缺陷三维特征,研究成形工艺与缺陷特征的相关性。结果表明:当能量输入密度为59.1 J/mm~3的优化工艺时成形试样中互相搭接的熔道形貌齐整、随机分布的规则气孔尺寸小于30 μm、致密度高达99.9998%。在较窄的工艺窗口下(220~300 W、700~ 1300 mm/s),试样致密度对扫描速度更为敏感,高扫描速度易形成分布在熔道搭接区内极不规则的未熔合。偏离优化工艺时,缺陷数量增多,部分缺陷尺寸大于30 μm,其中高激光功率形成的气孔形状或高扫描速度形成的未熔合形状都与各自的尺寸密切相关,即尺寸越大,形状越不规则,产生的不利影响要远大于规则气孔。 |
其他语种文摘
|
Multiple GH4169 samples were prepared with the regulation of the forming process of selective laser melting(SLM), particularly in laser power and scanning speed. The microstructure including defect morphology and distribution was observed by using metallography. The sample porosity was acquired using X-ray computed tomography(XCT), and the three-dimensional characteristics of defect were also statistically studied. The correlation of forming process and defect characteristics was finally analyzed. The results show that when the optimized energy input density is 59.1 J/mm~3,the forming samples share common features of overlapping melting trace with a tidy morphology,randomly distributed pores with sizes of less than 30 μm and the density is as high as 99.9998%. Within a narrow window of forming process(220-300 W, 700-1300 mm/s), the scanning speed takes more responsibility for the sample density,and its high value tends to form extremely irregular lack of fusions(LOFs) that distribute in the overlap of melting trace. As deviating from the optimized process,the number of defects has increased,and some defect sizes are also greater than 30 μm. The shapes of pores and LOFs respectively formed by high laser power or high scanning speed are closely related to their own sizes, that is, the larger the size, the more irregular the shape, which produces more detrimental effects than regular pores. |
来源
|
航空材料学报
,2024,44(1):104-111 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000059
|
关键词
|
激光选区熔化
;
GH4169合金
;
成形工艺
;
熔道
;
缺陷
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
航空材料检测与评价北京市重点实验室, 航空材料检测与评价北京市重点实验室, 北京, 100095
3.
中国航空发动机集团材料检测与评价重点实验室, 中国航空发动机集团材料检测与评价重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7676468
|
参考文献 共
21
共2页
|
1.
Donachie M J.
Superalloys:a technical guide,2002
|
CSCD被引
2
次
|
|
|
|
2.
齐欢. INCONEL 718(GH4169)高温合金的发展与工艺.
材料工程,2012(8):92-100
|
CSCD被引
52
次
|
|
|
|
3.
李胡燕.
GH_4169镍基高温合金的组织和性能研究,2014
|
CSCD被引
3
次
|
|
|
|
4.
Jia Q B. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties.
Journal of Alloys and Compounds,2014,585:713-721
|
CSCD被引
61
次
|
|
|
|
5.
Kamran M. Selective laser melting of Inconel 625 using pulse shaping.
Rapid Prototyping Journal,2010,16(4):248-257
|
CSCD被引
8
次
|
|
|
|
6.
张安峰. 高性能金属零件激光增材制造技术研究进展.
航空制造技术,2016,59(22):16-22
|
CSCD被引
35
次
|
|
|
|
7.
Thijs L. A study of the microstructural evolution during selective laser melting.
Acta Materialia,2010,58:3303-3312
|
CSCD被引
203
次
|
|
|
|
8.
Murr L E. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies.
Journal of Materials Science & Technology,2012,28(1):1-14
|
CSCD被引
90
次
|
|
|
|
9.
Busachi A. A review of additive manufacturing technology and cost estimation techniques for the defence sector.
CIRP Journal of Manufacturing Science and Technology,2017,19:117-128
|
CSCD被引
5
次
|
|
|
|
10.
Kruth J P. Consolidation phenomena in laser and powder-bed based layered manufacturing.
CIRP Annals-Manufacturing Technology,2007,56:730-759
|
CSCD被引
70
次
|
|
|
|
11.
Deng D Y. Microstructure and mechanical properties of Inconel 718 processed by selective laser melting: sample orientation dependence and effects of post heat treatments.
Materials Science and Engineering:A,2018,713:294-306
|
CSCD被引
30
次
|
|
|
|
12.
Oliveira J P. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice.
Progress in Materials Science,2020,107:100590
|
CSCD被引
37
次
|
|
|
|
13.
张国会. 选区激光熔化技术制备GH_4169合金的致密度研究.
激光与光电子学进展,2020,57(3):1-7
|
CSCD被引
2
次
|
|
|
|
14.
杜胶义.
GH_4169镍基合金粉末选区激光熔化基础工艺研究,2014
|
CSCD被引
1
次
|
|
|
|
15.
马威.
选区激光熔化GH_4169成形件表面质量和致密度研究,2017
|
CSCD被引
2
次
|
|
|
|
16.
Teng C. A review of defect modeling in laser material processing.
Additive Manu-facturing,2017,14:137-147
|
CSCD被引
12
次
|
|
|
|
17.
Simchi A. On the development of direct metal laser sintering for rapid tooling.
Journal of Materials Processing Technology,2013,141(3):319-328
|
CSCD被引
30
次
|
|
|
|
18.
尹燕. 选区激光熔化GH_4169粉末特性及成型组织结构的研究.
热喷涂技术,2017(9):56-62
|
CSCD被引
1
次
|
|
|
|
19.
Vilaro T. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting.
Metallurgical and Materials Transactions A,2011,42(10):3190-3199
|
CSCD被引
67
次
|
|
|
|
20.
Khairallah S A. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and forming mechanisms of pores, spatter, and denudation zones.
Acta Materialia,2016,108:36-45
|
CSCD被引
123
次
|
|
|
|
|