增材制造镍基高温合金在航空发动机与燃气轮机中的研究应用进展
Progress in research and applications of additively manufactured nickel-based superalloy in aero-engines and gas turbines
查看参考文献104篇
文摘
|
镍基高温合金具有良好的高温性能,被广泛用于航空发动机与燃气轮机热端部件的制造。增材制造逐点快速熔凝、逐层累积堆叠的工艺特点,不仅可实现高性能复杂结构零件的快速制造,还可用于损伤零件的高效率、高质量修复。目前,增材制造技术已逐渐成为镍基高温合金零件制备及修复的重要技术途径之一。本文综述了增材制造镍基高温合金在显微组织与冶金缺陷研究方面的进展,总结现有文献中GH3536、GH3625和GH4169三种常用镍基高温合金的拉伸性能,介绍增材制造镍基高温合金零件在航空发动机及燃气轮机中的典型应用案例。最后,针对现有研究存在的问题及制约增材制造镍基高温合金零件应用的困难,提出从设计增材制造专用镍基高温合金成分、建立增材制造镍基高温合金专用热处理/热等静压工艺、开发单晶镍基高温合金增材制造技术、发展增材制造实时监测控制技术、创新增材制造零件内表面处理技术等方面,进一步促进增材制造镍基高温合金零件的工程应用。 |
其他语种文摘
|
Nickel-based superalloy is an essential material to prepare hot-end components in aero-engines and gas turbines,due to its excellent mechanical properties under high temperature. Additive manufacturing(AM) is one of the most important techniques to fabricate superalloy components with complex geometry. In this paper,the research progress of microstructure and defects of AMed superalloy is reviewed. Based on the existing literature, tensile properties of GH3536, GH3625 and GH4169 are summarized. Typical applications of AMed superalloy components in aero-engines and gas turbines are presented. Finally, for the problems in existing investigations, it is suggested that the future research can focus on materials design, heat treatment/hot isostatic pressure process optimization, single crystal preparation, real-time monitoring technique development and internal surface treatment technique innovation. |
来源
|
航空材料学报
,2024,44(1):31-45 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000211
|
关键词
|
增材制造
;
镍基高温合金
;
航空发动机
;
燃气轮机
;
显微组织
;
拉伸性能
|
地址
|
1.
中国航发增材制造技术创新中心, 中国航发增材制造技术创新中心, 北京, 100095
2.
中国航发北京航空材料研究院3D打印研究与工程技术中心, 北京, 100095
3.
航发优材(镇江)增材制造有限公司技术部, 江苏, 镇江, 212132
4.
石油和化学工业规划院石油化工处, 北京, 100013
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家重大科技专项
;
国家自然科学基金
;
基础加强计划技术领域基金
;
中国航发自主创新专项资金
|
文献收藏号
|
CSCD:7676462
|
参考文献 共
104
共6页
|
1.
孙晓峰. 激光增材制造高温合金材料与工艺研究进展.
金属学报,2021,57(11):1471-1483
|
CSCD被引
23
次
|
|
|
|
2.
Zhu A Z. A model for the creep deformation behaviour of nickelbased single crystal superalloys.
Acta Materialia,2012,60(12):4888-4900
|
CSCD被引
35
次
|
|
|
|
3.
刘伟. 复杂结构与高性能材料增材制造技术进展.
机械工程学报,2019,55(20):128-151
|
CSCD被引
52
次
|
|
|
|
4.
Huang S. Microstructure and property evaluation of TA15 titanium alloy fabricated by selective laser melting after heat treatment.
Optics & Laser Technology,2021,144:107422
|
CSCD被引
8
次
|
|
|
|
5.
Tan C. Progress and perspectives in laser additive manufacturing of key aeroengine materials.
International Journal of Machine Tools and Manufacture,2021,170:103804
|
CSCD被引
49
次
|
|
|
|
6.
Yong C K. A critical review of the material characteristics of additive manufactured IN718 for high-temperature application.
Metals,2020,10(12):1576
|
CSCD被引
4
次
|
|
|
|
7.
冀国锋. 风扇/压气机增材制造技术的应用与发展趋势.
航空动力,2020(2):75-78
|
CSCD被引
4
次
|
|
|
|
8.
王天元. 航空装备激光增材制造技术发展及路线图.
航空材料学报,2023,43(1):1-17
|
CSCD被引
12
次
|
|
|
|
9.
Kurz W. Theory of microstructural development during rapid solidification.
Acta Metallurgica,1986,34(5):823-830
|
CSCD被引
195
次
|
|
|
|
10.
Gaumann M. Epitaxial laser metal forming: analysis of microstructure formation.
Materials Science and Engineering: A,1999,271(1):232-241
|
CSCD被引
91
次
|
|
|
|
11.
Gaumann M. Single-crystal laser deposition of superalloys:processing–microstructure maps.
Acta Materialia,2001,49(6):1051-1062
|
CSCD被引
132
次
|
|
|
|
12.
Wilson J M. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis.
Journal of Cleaner Production,2014,80:170-178
|
CSCD被引
25
次
|
|
|
|
13.
Zhang D. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy.
Materials Science and Engineering: A,2015,644:32-40
|
CSCD被引
45
次
|
|
|
|
14.
Xu X. Enhancing mechanical properties of wire + arc additively manufactured Inconel 718 superalloy through in-process thermo-mechanical processing.
Materials & Design,2018,160:1042-1051
|
CSCD被引
12
次
|
|
|
|
15.
Tayon W A. Correlation between microstructure and mechanical properties in an Inconel 718 deposit produced via electron beam freeform fabrication.
Journal of Manufacturing Science and Engineering,2014,136:061005
|
CSCD被引
4
次
|
|
|
|
16.
Chlebus E. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting.
Materials Science and Engineering: A,2015,639:647-655
|
CSCD被引
51
次
|
|
|
|
17.
Deng D. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments.
Materials Science and Engineering:A,2018,713:294-306
|
CSCD被引
30
次
|
|
|
|
18.
Jinoop A N. Laser-assisted directed energy deposition of nickel super alloys: a review.
Proceedings of the Institution of Mechanical Engineers,Part L,2019,233(11):2376-2400
|
CSCD被引
2
次
|
|
|
|
19.
郑寅岚. 选区激光熔化成形GH3536合金的高温拉伸性能及断裂行为分析.
中国激光,2020,47(8):0802008
|
CSCD被引
12
次
|
|
|
|
20.
闵师领. 激光粉末床技术制造GH_3536合金研究现状.
激光与光电子学进展,2021,58(17):98-109
|
CSCD被引
2
次
|
|
|
|
|