增材制造600 ℃高温钛合金研究进展
Progress on additive manufacturing of 600 ℃ high-temperature titanium alloys
查看参考文献86篇
文摘
|
先进航空发动机高压压气机550~600 ℃环境使用的关键/重要件对600 ℃高温钛合金提出迫切需求。但是,难成形的复杂构件以及梯度/复合结构与功能一体化构件等的制造,采用传统铸造、锻造等工艺技术难以满足需求和研发要求。增材制造是先进制造技术的典型代表,拥有材料设计-制造一体化、复杂设计-定制一体化等独特优势,为600 ℃高温钛合金新材料/新技术研发提供了新的途径。目前国内外已开始关注通过增材制造的方式制备600 ℃高温钛合金,重点研究材料-工艺-组织-性能的关系。本文首先简要回顾600 ℃高温钛合金研究,其次重点介绍不同增材制造工艺下600 ℃高温钛合金沉积态和后处理态的微观组织特点;在综合性能研究方面,列举并分析拉伸性能、蠕变性能、热疲劳性能和抗氧化性能等关键性能;在复杂设计/复合结构章节,论述以600 ℃高温钛合金为基体的复合材料和梯度结构增材制造的研究进展。最后,对增材制造600 ℃高温钛合金材料开发、复合工艺探索、缺陷控制和性能评价标准建立等研究方向进行展望。 |
其他语种文摘
|
Key components used in the high-pressure compressor of advanced aero engines operating in the 550-600 ℃ range have an urgent demand for 600 ℃ high-temperature titanium alloy. However,the use of casting,forging,and other traditional processing techniques is not sufficient to meet the requirements for gradient or composite structures, functional integration components and complex components that are difficult to form. Additive manufacturing is an advanced manufacturing technology that offers unique advantages such as material design-manufacturing integration and complex design-customization integration. It provides a new approach to the development of new materials and technologies of 600 ℃ high-temperature titanium alloy. Currently, attention is being paid to the processing of 600 ℃ high-temperature titanium alloy by using additive manufacturing techniques at home and abroad,focusing on the relationship among materials,processing,structures,and properties. Firstly,this paper reviews the research on 600 ℃ high-temperature titanium alloy in brief,introduces the microstructure characteristics of deposited and post-treated states of 600 ℃ high-temperature titanium alloy under different additive manufacturing processes,and analyzes key properties such as tensile properties, creep properties, thermal fatigue properties, and antioxidant properties. Then, the research progress of composite materials based on 600 ℃ high-temperature titanium alloy and gradient structure built by additive manufacturing is discussed. Finally, the prospects are provided for research directions including the development of 600 ℃ high-temperature titanium alloy materials for additive manufacturing, exploration of hybrid manufacturing processes, defect control, and establishment of performance evaluation standards. |
来源
|
航空材料学报
,2024,44(1):15-30 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000106
|
关键词
|
600 ℃高温钛合金
;
增材制造
;
组织性能
;
复杂结构
;
发展方向
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
清华大学新材料国际研发中心, 北京, 100084
3.
辽宁工程技术大学机械工程学院, 辽宁, 阜新, 123000
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金“叶企孙”科学基金
;
中国航发自主创新专项
|
文献收藏号
|
CSCD:7676461
|
参考文献 共
86
共5页
|
1.
Peters M. Titanium alloys for aerospace applications.
Advanced Engineering Materials,2003,5(6):419-427
|
CSCD被引
53
次
|
|
|
|
2.
Ouyang P X. Microstructure characteristics after combustion and fireproof mechanism of TiAl-based alloys.
Materials Today Communication,2018,16:364-373
|
CSCD被引
8
次
|
|
|
|
3.
弭光宝. 石墨烯增强钛基复合材料界面调控及强韧化机理研究进展.
航空材料学报,2023,43(6):20-35
|
CSCD被引
3
次
|
|
|
|
4.
曹京霞. 高温钛合金制造技术研究进展.
钛工业进展,2018,35(1):1-8
|
CSCD被引
7
次
|
|
|
|
5.
黄栋. 高温钛合金的研究现状及其发展.
钢铁钒钛,2018,39(1):60-66
|
CSCD被引
2
次
|
|
|
|
6.
王清江. 高温钛合金的现状与前景.
航空材料学报,2014,34(4):1-26
|
CSCD被引
98
次
|
|
|
|
7.
Herzog D. Additive manufacturing of metals.
Acta Materialia,2016,117:371-392
|
CSCD被引
252
次
|
|
|
|
8.
Chowdhury M S I. Wear behaviour of coated carbide tools during machining of Ti6Al4V aerospace alloy associated with strong built up edge formation.
Surface and Coatings Technology,2017,313:319-327
|
CSCD被引
3
次
|
|
|
|
9.
王彬. 激光熔化沉积高温钛合金Ti60快速凝固组织.
材料热处理学报,2008,29(6):86-92
|
CSCD被引
11
次
|
|
|
|
10.
Lewandowski J J. Metal additive manufacturing: a review of mechanical properties.
Annual Review of Materials Research,2016,46:151-186
|
CSCD被引
59
次
|
|
|
|
11.
Blakey-Milner B. Metal additive manufacturing in aerospace: a review.
Materials & Design,2021,209:110008
|
CSCD被引
63
次
|
|
|
|
12.
Wang T. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing.
Journal of Alloys and Compounds,2015,632:505-513
|
CSCD被引
60
次
|
|
|
|
13.
Gu D D. Laser additive manufacturing of metallic components: materials, processes and mechanisms.
International Materials Reviews,2012,57(3):133-164
|
CSCD被引
242
次
|
|
|
|
14.
Nguyen H D. A critical review on additive manufacturing of Ti-6Al-4V alloy:microstructure and mechanical properties.
Journal of Materials Research and Technology,2022,18:4641-4661
|
CSCD被引
9
次
|
|
|
|
15.
Azarniya A. Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): process, microstructure, and mechanical properties.
Journal of Alloys and Compounds,2019,804:163-191
|
CSCD被引
25
次
|
|
|
|
16.
Williams J C. Alternate materials choices-some challenges to the increased use of Ti alloys.
Materials Science and Engineering:A,1999,263(2):107-111
|
CSCD被引
17
次
|
|
|
|
17.
吴明宇. 600 ℃高温钛合金燃烧组织演变及机理.
物理学报,2023,72(16):166102
|
CSCD被引
4
次
|
|
|
|
18.
蔡建明. 新一代600℃高温钛合金材料的合金设计及应用展望.
航空材料学报,2014,34(4):27-36
|
CSCD被引
26
次
|
|
|
|
19.
赵永庆. 我国自主研发钛合金现状与进展.
航空材料学报,2014,34(4):51-61
|
CSCD被引
38
次
|
|
|
|
20.
侯金健. 国内外高温钛合金研究及应用的最新发展.
热加工工艺,2014,43(10):11-15
|
CSCD被引
10
次
|
|
|
|
|