Robust Two-Stage Estimation in General Spatial Dynamic Panel Data Models
查看参考文献26篇
文摘
|
This paper proposes a robust two-stage estimation procedure for a general spatial dynamic panel data model in light of the two-stage estimation procedure in Jin,et al.(2020).The authors replace the least squares estimation in the first stage of Jin,et al.(2020) by M-estimation.The authors also provide the justification for not making any change in its second stage when the number of time periods is large enough.The proposed methodology is robust and efficient,and it can be easily implemented.In addition,the authors study the limiting behavior of the parameter estimators,which are shown to be consistent and asymptotic normally distributed under some conditions.Extensive simulation studies are carried out to assess the proposed procedure and a COVID-19 data example is conducted for illustration. |
来源
|
Journal of Systems Science and Complexity
,2023,36(6):2580-2604 【核心库】
|
DOI
|
10.1007/s11424-023-2172-2
|
关键词
|
Asymptotic normality
;
consistency
;
M-estimation
;
model selection
;
outliers
|
地址
|
1.
Department of Mathematics and Statistics,York University, Canada, Toronto, M3J 1P3
2.
Department of Statistics and Finance,School of Management,University of Science and Technology of China, Hefei, 230026
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
数学 |
基金
|
supported by the Natural Sciences and Engineering Research Council of Canada
;
国家自然科学基金
;
the Anhui Provincial Natural Science Foundation
|
文献收藏号
|
CSCD:7659088
|
参考文献 共
26
共2页
|
1.
Ord K. Estimation methods for models of spatial interaction.
Journal of the American Statistical Association,1975,70(349):120-126
|
CSCD被引
21
次
|
|
|
|
2.
Whittle P. On stationary processes in the plane.
Biometrika,1954,41:434-449
|
CSCD被引
7
次
|
|
|
|
3.
Elhorst J P. Dynamic models in space and time.
Geographical Analysis,2001,33(2):119-140
|
CSCD被引
8
次
|
|
|
|
4.
Yu J. Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large.
Journal of Econometrics,2008,146:118-134
|
CSCD被引
16
次
|
|
|
|
5.
Lee L. Efficient GMM estimation of spatial dynamic panel data models with fixed effects.
Journal of Econometrics,2014,180:174-197
|
CSCD被引
12
次
|
|
|
|
6.
Lee L. Identification of spatial Durbin panel models.
Journal of Applied Econometrics,2016,31:133-162
|
CSCD被引
1
次
|
|
|
|
7.
Yang Z. Unified M-estimation of fixed-effects spatial dynamic models with short panels.
Journal of Econometrics,2018,205:423-447
|
CSCD被引
2
次
|
|
|
|
8.
Bera A K. Robust LM tests for spatial dynamic panel data models.
Regional Science and Urban Economics,2019,76:47-66
|
CSCD被引
2
次
|
|
|
|
9.
Jin B S. Estimation and model selection in general spatial dynamic panel data models.
Proceedings of the National Academy of Sciences,2020,117(10):5235-5241
|
CSCD被引
1
次
|
|
|
|
10.
Huber P J. Robust estimation of a location parameter.
The Annals of Mathematical Statistics,1964,35(1):73-101
|
CSCD被引
158
次
|
|
|
|
11.
Huber P J. Robust regression: Asymptotics, conjectures and Monte Carlo.
The Annals of Statistics,1973,1(5):799-821
|
CSCD被引
62
次
|
|
|
|
12.
Huber P J.
Robust Statistics,1981
|
CSCD被引
166
次
|
|
|
|
13.
Bickel P J. One-step Huber estimates in the linear model.
Journal of the American Statistical Association,1975,70(350):428-434
|
CSCD被引
8
次
|
|
|
|
14.
Yohai V J. Asymptotic behavior of M-estimators for the linear model.
The Annals of Statistics,1979,7(2):258-268
|
CSCD被引
7
次
|
|
|
|
15.
Bai Z D. General M-Estimation.
Journal of Multivariate Analysis,1997,63:119-135
|
CSCD被引
3
次
|
|
|
|
16.
Wu Y. A strongly consistent information criterion for linear model selection based on M-estimation.
Probability Theory and Related Fields,1999,113:599-625
|
CSCD被引
4
次
|
|
|
|
17.
Li G. Nonconcave penalized M-estimation with a diverging number of parameters.
Statistica Sinica,2011,21(1):391-419
|
CSCD被引
9
次
|
|
|
|
18.
Loh P L. Statistical consistency and asymptotic normality for high-dimensional robust Mestimators.
The Annals of Statistics,2017,45(2):866-896
|
CSCD被引
3
次
|
|
|
|
19.
Bai Z D. M-estimation of multivariate linear regression parameters under a convex discrepancy function.
Statist Sinica,1992,2(1):237-254
|
CSCD被引
10
次
|
|
|
|
20.
Fan J. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association,2001,96(456):1348-1360
|
CSCD被引
373
次
|
|
|
|
|