Quantized Formation Control of Heterogeneous Nonlinear Multi-Agent Systems with Switching Topology
查看参考文献37篇
文摘
|
This paper studies the formation control problem for the second-order heterogeneous nonlinear multi-agent systems (MASs) with switching topology and quantized control inputs.Compared with formation control under the fixed topology,under the switching topology inherent nonlinear dynamics of the agent and the connectivity change of the communication topology are considered.Moreover,to avoid the chattering phenomenon caused by unknown input disturbances,the hysteretic quantizers are incorporated to quantize the input signals.By using the Lyapunov stability theory and leader-follower formation approach,the proposed formation control scheme ensures that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB).Finally,the efficiency of the theoretical results is proved by a simulation example. |
来源
|
Journal of Systems Science and Complexity
,2023,36(6):2382-2397 【核心库】
|
DOI
|
10.1007/s11424-023-2387-2
|
关键词
|
Formation control
;
heterogeneous
;
multi-agent systems
;
quantized control inputs
;
switching topology
|
地址
|
1.
Navigation College,Dalian Maritime University, Dalian, 116026
2.
Neusoft Reachauto Corporation, Shenyang, 110179
3.
College of Science,Liaoning University of Technology, Jinzhou, 121001
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7659079
|
参考文献 共
37
共2页
|
1.
Dong X W. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems.
IEEE Transactions on Automation Science and Engineering,2019,16(1):229-240
|
CSCD被引
33
次
|
|
|
|
2.
Wang X K. Distributed sliding mode control for leader-follower formation flight of fixed-wing unmanned aerial vehicles subject to velocity constraints.
International Journal of Robust and Nonlinear Control,2020,31(6):2110-2125
|
CSCD被引
4
次
|
|
|
|
3.
Wu J. Distributed UAV swarm formation and collision avoidance strategies over fixed and switching topologies.
IEEE Transactions on Cybernetics,2022,52(10):10969-10979
|
CSCD被引
4
次
|
|
|
|
4.
Wang P. Space-and-time-synchronized simultaneous fully-actuated vehicle tracking/formation using cascaded prescribed-time control.
International Journal of Robust and Nonlinear Control,2021,32(4):2380-2398
|
CSCD被引
2
次
|
|
|
|
5.
Cai M. Multi-lane unsignalized intersection cooperation with flexible lane direction based on multi-vehicle formation control.
IEEE Transactions on Vehicular Technology,2022,71(6):5787-5798
|
CSCD被引
4
次
|
|
|
|
6.
Pirani M. Impact of network topology on the resilience of vehicle platoons.
IEEE Transactions on Intelligent Transportation Systems,2022,23(9):15166-15177
|
CSCD被引
2
次
|
|
|
|
7.
Gu N. Distributed containment maneuvering of uncertain underactuated unmanned surface vehicles guided by multiple virtual leaders with a formation.
Ocean Engineering,2019,187:105996
|
CSCD被引
6
次
|
|
|
|
8.
Peng Z H. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance.
IEEE Transactions on Cybernetics,2020,50(6):2527-2535
|
CSCD被引
16
次
|
|
|
|
9.
Lu Y. Event-triggered adaptive formation keeping and interception scheme for autonomous surface vehicles under malicious attacks.
IEEE Transactions on Industrial Informatics,2022,18(6):3947-3957
|
CSCD被引
2
次
|
|
|
|
10.
Li S B. Formation control of heterogeneous discrete-time nonlinear multiagent systems with uncertainties.
IEEE Transactions on Industrial Electronics,2017,64(6):4730-4740
|
CSCD被引
10
次
|
|
|
|
11.
Yan B. Optimal robust formation control for heterogeneous multi-agent systems based on reinforcement learning.
International Journal of Robust and Nonlinear Control,2021,32(5):2683-2704
|
CSCD被引
1
次
|
|
|
|
12.
Liu D. An adaptive disturbance decoupling perspective to longitudinal platooning.
IEEE Control Systems Letters,2022,6:668-673
|
CSCD被引
3
次
|
|
|
|
13.
Yan T R. Flocking of multi-agent systems with unknown nonlinear dynamics and heterogeneous virtual leader.
International Journal of Control, Automation and Systems,2021,19(9):2931-2939
|
CSCD被引
1
次
|
|
|
|
14.
Yu W W. Second-order consensus for multi-agent systems with directed topologies and nonlinear dynamics.
IEEE Transactions on Systems, Man, and Cybernetics,2009,40(3):881-891
|
CSCD被引
1
次
|
|
|
|
15.
Chen K R. Consensus of second-order nonlinear multi-agent systems under state-controlled switching topology.
Nonlinear Dynamics,2015,81(4):1871-1878
|
CSCD被引
4
次
|
|
|
|
16.
Qin J H. Second-order consensus for multi-agent systems with switching topology and communication delay.
Systems and Control Letters,2011,60(6):390-397
|
CSCD被引
27
次
|
|
|
|
17.
Wang L. Limited-Budget Consensus Design and Analysis for Multiagent Systems With Switching Topologies and Intermittent Communications.
IEEE/CAA Journal of Automatica Sinica,2021,8(10):1724-1736
|
CSCD被引
6
次
|
|
|
|
18.
Ma L. Cooperative Target Tracking of Multiple Autonomous Surface Vehicles Under Switching Interaction Topologies.
IEEE/CAA Journal of Automatica Sinica,2022,10(3):673-684
|
CSCD被引
8
次
|
|
|
|
19.
Deng C. Fault-tolerant fuzzy formation control for a class of nonlinear multiagent systems under directed and switching topology.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,2021,51(9):5456-5465
|
CSCD被引
5
次
|
|
|
|
20.
Xi J X. Energy-constraint formation for multiagent systems with switching interaction topologies.
IEEE Transactions on Circuits and Systems I: Regular Papers,2020,67(7):2442-2454
|
CSCD被引
13
次
|
|
|
|
|