Mean-Square Output Consensus of Heterogeneous Multi-Agent Systems with Multiplicative Noises in Dynamics and Measurements
查看参考文献32篇
文摘
|
This paper studies the output consensus problem of heterogeneous linear stochastic multiagent systems with multiplicative noises in system parameters and measurements,where the system noise in each agent is allowed to be different.By employing stochastic output regulation theory and the stochastic Lyapunov function approach,a composite controller embedded with stochastic output regulator equations (SOREs) and a stochastic dynamic compensator is designed to achieve the meansquare output consensus of the multi-agent systems.To implement the consensus algorithm,a sufficient condition for feasible solutions of the SOREs is first established in terms of Lyapunov and Selvester equations.Then the time-varying SOREs are approximated by the Euler-Maruyama method combined with an a-posteriori partial estimation of the increments of the Brownian motion.A numerical example illustrates the theoretical results. |
来源
|
Journal of Systems Science and Complexity
,2023,36(6):2364-2381 【核心库】
|
DOI
|
10.1007/s11424-023-2281-y
|
关键词
|
Heterogeneous multi-agent systems
;
multiplicative noise
;
output consensus
;
stochastic output regulation
|
地址
|
1.
Guangxi University, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning, 530004
2.
School of Electrical Engineering,Guangxi University, Nanning, 530004
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
the Guangxi Science and Technology Planning Project
;
the Guangxi Natural Science Foundation
;
the Interdisciplinary Scientific Research Foundation of Guangxi University
;
the Guangxi University Natural Science and Technological Innovation Development Multiplication Plan Project
|
文献收藏号
|
CSCD:7659078
|
参考文献 共
32
共2页
|
1.
Lai J G. Distributed secondary voltage control for autonomous microgrids under additive measurement noises and time delays.
IET Generation, Transmission & Distribution,2019,13(14):2976-2985
|
CSCD被引
1
次
|
|
|
|
2.
Xie Y J. Distributed event-triggered secondary voltage control for microgrids with time delay.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,2019,49(8):1582-1591
|
CSCD被引
1
次
|
|
|
|
3.
Wang X H. Cooperative UAV formation flying with obstacle/collision avoidance.
IEEE Transactions on Control Systems Technology,2007,15(4):672-679
|
CSCD被引
37
次
|
|
|
|
4.
Shi F R. Fast convergence time synchronization in wireless sensor networks based on average consensus.
IEEE Transactions on Industrial Informatics,2019,16(2):1120-1129
|
CSCD被引
1
次
|
|
|
|
5.
Olfati-Saber R. Consensus problems in networks of agents with switching topology and time-delays.
IEEE Transactions on Automatic Control,2004,49(9):1520-1533
|
CSCD被引
778
次
|
|
|
|
6.
Cai H. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems.
Automatica,2017,75:299-305
|
CSCD被引
24
次
|
|
|
|
7.
Yang R T. Bipartite Consensus of Linear Multi-Agent Systems by Distributed Event-Triggered Control.
Journal of Systems Science & Complexity,2021,34(3):955-974
|
CSCD被引
8
次
|
|
|
|
8.
Ma L F. Consensus control of stochastic multi-agent systems: A survey.
Science China Information Sciences,2017,60(12):1-15
|
CSCD被引
4
次
|
|
|
|
9.
Li T. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises.
IEEE Transactions on Automatic Control,2010,55(9):2043-2057
|
CSCD被引
56
次
|
|
|
|
10.
Liu S. Distributed consensus for multi-agent systems with delays and noises in transmission channels.
Automatica,2011,47(5):920-934
|
CSCD被引
29
次
|
|
|
|
11.
Guo S Y. Mean-square consensus of heterogeneous multi-agent systems with communication noises.
Journal of the Franklin Institute,2018,355(8):3717-3736
|
CSCD被引
5
次
|
|
|
|
12.
Cheng L. A mean square consensus protocol for linear multi-agent systems with communication noises and fixed topologies.
IEEE Transactions on Automatic Control,2013,59(1):261-267
|
CSCD被引
20
次
|
|
|
|
13.
Zong X F. Consensus conditions of continuous-time multi-agent systems with time-delays and measurement noises.
Automatica,2019,99:412-419
|
CSCD被引
6
次
|
|
|
|
14.
Zong X F. Stochastic consensus of linear multi-agent systems with multiplicative measurement noises.
Proceedings of the 12th IEEE International Conference on Control and Automation (ICCA),2016
|
CSCD被引
1
次
|
|
|
|
15.
Zhang Y Y. Stochastic leader-following consensus of multi-agent systems with measurement noises and communication time-delays.
Neurocomputing,2018,282:136-145
|
CSCD被引
3
次
|
|
|
|
16.
Zong X F. Consensus control of second-order delayed multiagent systems with intrinsic dynamics and measurement noises.
International Journal of Robust and Nonlinear Control,2018,28(16):5050-5070
|
CSCD被引
2
次
|
|
|
|
17.
Ren J H. Containment control of multi-agent systems with stochastic multiplicative noises.
Journal of Systems Science & Complexity,2021,35(3):909-930
|
CSCD被引
1
次
|
|
|
|
18.
Zhang J. Event-triggered Control for Heterogeneous Discrete-time Multiagent Systems Subject to Uncertainties and Noises.
International Journal of Control, Automation and Systems,2020,18(3):661-671
|
CSCD被引
1
次
|
|
|
|
19.
Luo S Y. Mean-square consensus of heterogeneous multi-agent systems with time-varying communication delays and intermittent observations.
IEEE Transactions on Circuits and Systems II: Express Briefs,2021,69(1):184-188
|
CSCD被引
2
次
|
|
|
|
20.
Ding D R. Event-triggered consensus control for discrete-time stochastic multi-agent systems: The input-to-state stability in probability.
Automatica,2015,62:284-291
|
CSCD被引
14
次
|
|
|
|
|