基于F-P干涉仪CH_4气体点源探测关键参数仿真分析
Simulation Analysis of Key Parameters for CH_4 Gas Point Source Detection Based on F-P Interferometer
查看参考文献14篇
文摘
|
基于多光束干涉光谱成像原理,研究一种高空间分辨率甲烷气体点源探测方法。首先,介绍了甲烷气体探测仪的工作原理和探测方案,详细设计法布里-珀罗干涉仪的系统参数,并建立甲烷气体探测正演模型。然后,分析了干涉信号和甲烷浓度之间的对应关系,以及仪器参数对探测灵敏度的影响。最终,迭代优化得到各光学结构参数的最优取值。结果表明,在甲烷探测波段为1 630~1 675 nm,自由光谱范围为12.5 nm,光谱分辨率为0.1 nm,法布里-珀罗标准具腔长为0.08 mm,腔内反射率为97.5%,截止滤光片范围为(1 630±4) nm~(1 675±4) nm时,探测源25%浓度变化对应的干涉信号相对变化量范围为[0.65%,4.30%],探测灵敏度较好。研究结果可为高精度碳监测提供理论依据和技术支撑。 |
其他语种文摘
|
The increase in greenhouse gases carbon dioxide and methane can directly lead to changes in the global climate and cause a significant impact on the economies of countries and human life. Methane, as the second-largest greenhouse gas on Earth, has a global warming potential 30 times higher than CO_2 over a 100-year period, and its lifespan is approximately 9.1 years. At present, anthropogenic CH_4 emissions primarily originate from numerous point sources. Implementing measures to reduce CH_4 emissions can help decrease the rate of global warming. Therefore, it is crucial to conduct research on monitoring technologies for CH_4 and investigate key carbon emission sources. Hyperspectral satellite remote sensing for detecting greenhouse gases has become a candidate technology for point source detection. It has advantages such as high viewpoint, wide field of view, the ability to achieve dynamic monitoring, obtain more precise and demand-driven information data. Utilizing remote sensing methods to monitor and provide feedback on point source emissions of greenhouse gases like methane plays a crucial role in effectively addressing climate change. Existing payload technologies in China are geared towards large satellite platforms, enabling wide-area coverage with low spatial resolution monitoring. However, traditional methods such as grating spectrometry, Michelson interferometry, and spatial heterodyne are unable to meet the efficient and high-precision monitoring requirements for small-scale anthropogenic emission sources. They struggle to achieve point source detection. Therefore, it is necessary to conduct research on satellite remote sensing carbon monitoring technologies that offer high accuracy and high spatial resolution. The Fabry-Perot interferometry technique possesses extremely high spectral resolution, capable of discerning minute wavelength differences in the spectrum. The theoretical basis of this technique is the multi-beam equal-inclination interferometry. By using an interference ring, it is possible to directly obtain the spectral information of target light at different incident angles. By collecting the spectral information corresponding to different wavelengths of the target at different positions from multiple consecutive shots, the target spectral curve is obtained. This technique establishes a relationship between CH_4 gas concentration and the depth of spectral curve notches, offering advantages in point source detection with high spectral resolution and high spatial resolution. In CH_4 gas detection, the parameters of the Fabry- Perot interferometer and the optical filter have a significant impact on detection sensitivity. Properly configuring these parameters is crucial for improving detection accuracy. This paper presents a study on a high spatial resolution method for detecting point sources of methane gas based on the principle of multi-beam interferometric spectral imaging. Firstly, the working principle and detection scheme of the methane gas detector are introduced. The system parameters of the Fabry- Perot interferometer are designed, and a forward model for methane gas detection is established. Subsequently, the correspondence between interference signals and methane concentration, as well as the influence of instrument parameters on detection sensitivity, are analyzed. In the end, iterative optimization is performed to obtain the optimal values of various optical structural parameters. The results indicate that within the methane detection wavelength range of 1 630~1 675 nm, with a free spectral range of 12.5 nm and a spectral resolution of 0.1 nm, the optimal parameters for the Fabry-Perot interferometer are a cavity length of 0.08 mm and an intra-cavity reflectance of 97.5%. |
来源
|
光子学报
,2024,53(1):0130001 【核心库】
|
DOI
|
10.3788/gzxb20245301.0130001
|
关键词
|
温室气体探测
;
甲烷
;
法布里-珀罗干涉仪
;
探测灵敏度
|
地址
|
1.
中国科学院西安光学精密机械研究所, 中国科学院光谱成像技术重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
山东理工大学物理与光电工程学院, 淄博, 255000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
中国科学院西部青年学者项目
;
陕西省自然科学基金
;
中国科学院西部之光交叉团队项目
|
文献收藏号
|
CSCD:7657817
|
参考文献 共
14
共1页
|
1.
郑玉权. 温室气体遥感探测仪器发展现状.
中国光学,2011,4(6):546-561
|
CSCD被引
21
次
|
|
|
|
2.
汪钱盛. 温室气体星载被动遥感探测载荷研究进展.
遥感学报,2023,27(4):857-870
|
CSCD被引
4
次
|
|
|
|
3.
De Vries J. TROPOMI: Solar backscatter satellite instrument for air quality and climate.
SPIE. 6744,2007:85-92
|
CSCD被引
1
次
|
|
|
|
4.
Jervis D. The GHGSat-D imaging spectrometer.
Atmospheric Measurement Techniques,2021,14(3):2127-2140
|
CSCD被引
11
次
|
|
|
|
5.
熊伟. 高分五号卫星大气主要温室气体监测仪优化设计及数据分析.
上海航天,2019,36(S2):167-172
|
CSCD被引
5
次
|
|
|
|
6.
Bovensma H. SCIAMACHY: Mission objectives and measurement modes.
Journal of the Atmospheric Sciences,1999,56(2):127-150
|
CSCD被引
1
次
|
|
|
|
7.
Crisp D. NASA orbiting carbon observatory: measuring the column averaged carbon dioxide mole fraction from space.
Journal of Applied Remote Sensing,2008,2(1):023508
|
CSCD被引
9
次
|
|
|
|
8.
Suto H. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit.
Atmospheric Measurement Techniques,2021,14(3):2013-2039
|
CSCD被引
10
次
|
|
|
|
9.
Bermud F. IASI-NG program: a new generation of Infrared Atmospheric Sounding Interferometer.
2014 IEEE Geoscience and Remote Sensing Symposium,2014:1373-1376
|
CSCD被引
1
次
|
|
|
|
10.
Shi H. First level 1 product results of the greenhouse gas monitoring instrument on the GaoFen-5 satellite.
IEEE Transactions on Geoscience and Remote Sensing,2020,59(2):899-914
|
CSCD被引
12
次
|
|
|
|
11.
张淳民.
干涉成像光谱技术,2010
|
CSCD被引
13
次
|
|
|
|
12.
杜述松. 多光束干涉光谱成像技术.
光学学报,2013,33(8):0830003
|
CSCD被引
8
次
|
|
|
|
13.
刘双慧. 大气甲烷探测进展与全球甲烷分布分析.
遥感技术与应用,2022,7(2):436-450
|
CSCD被引
6
次
|
|
|
|
14.
Clough S A. Atmosphericradiative transfer modeling: a summary of the AER codes.
Journal of Quantitative Spectroscopy and Radiative Transfer,2005,91:233-244
|
CSCD被引
83
次
|
|
|
|
|