阿秒光脉冲:照亮通往物质内部电子世界的道路
Attosecond pulses of light: Shining the way to the world of electrons in matter
查看参考文献50篇
文摘
|
物理学始于对物质运动本质的哲学探索,而现代物理学则开端于对运动过程的定量实验测量.无论是速度还是加速度,这些最简单的物理量的定义都与时间密不可分.随着人类探索自然的脚步进入微观世界,就需要在更快的时间尺度上对微观粒子的运动过程进行观测,其根本原因在于越是处于基本层面的微观粒子,其特征运动时间越快.例如,特征尺度在微纳米层面的微电子器件的响应时间一般是纳秒量级(ns, 10-9 s),亚纳米小分子转动的时间尺度一般在皮秒量级(ps, 10-12 s),分子内原子振动的时间尺度可以达到飞秒量级(fs, 10-15 s),而原子内电子运动的时间尺度进一步达到了阿秒(as, 10-18 s),更快的物理过程(仄秒, zs, 10-21 s)则要进入原子核内部才能发生.在日常生活中,看清楚高速运动过程的一个方法就是采用高速摄影技术,在连续曝光条件下利用非常短促的快门将一个个时间片段“冻结”起来,然后再慢慢地逐帧回放.然而,微观世界的粒子包括分子、原子、电子等运动得太快,无论是机械还是电子的快门都无法提供足够短促的曝光时间来看清这些过程.突破此限制的技术途径之一是采用超短脉冲光束进行曝光来产生一个虚拟快门进行高速摄影,此时的时间分辨能力由短脉冲光束的持续时间,也就是光脉冲宽度所决定.沿着这条发展途径, Ahmed H. Zewail[1]首先利用飞秒光脉冲对分子化学反应的超快动力学过程进行了实时探测,开辟了飞秒化学新领域,并因此获得了1999年度的诺贝尔化学奖.其后,随之而来的挑战就是在更快的阿秒时间尺度上观测原子分子中电子的运动,其核心是要产生比飞秒光脉冲快1000倍的阿秒光脉冲.这一目标于2000年前后被实现,并逐渐开辟出阿秒光物理新领域.从这一发展脉络来看,因为开创了阿秒光科学领域而被授予诺贝尔物理学奖是一件再自然不过的事情. |
其他语种文摘
|
The Nobel Prize in Physics 2023 was awarded to Pierre Agostini (from The Ohio State University, Columbus, USA), Ferenc Krausz (from Max Planck Institute of Quantum Optics, Garching and Ludwig-Maximilians-Universitat Munchen, Germany) and Anne L’Huillier (from Lund University, Sweden), for their contributions to experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter. From the official website of the Nobel Prize, we can see the introduction “An attosecond (10-18 s) is so short that there are as many in one second as there have been seconds since the birth of the universe”. The attosecond pulses of light have given humanity new tools for exploring the world of electrons in matter and enabled the investigation of ultrafast processes that were previously impossible to follow. Back to 1887, Hertz discovered that under the irradiation of electromagnetic waves with a high enough frequency, electrons inside the material will be excited to form an electric current, which is the famous photoelectric effect. However, the photoelectric effect contradicted the electromagnetic wave theory founded by Maxwell and could not be understood for a long time. In 1905, Einstein explained the photoelectric effect for the first time by proposing the hypothesis of photons, which also promoted the establishment of quantum mechanics. However, Einstein’s theory of the photoelectric effect only holds true under the conditions of perturbative interactions caused by weak light intensity. Then, strong field physics emerges, with the introduction of multiphoton ionization, tunneling ionization, and above-threshold ionization, paving the way for the birth of attosecond pulses of light. In 1987, Anne L’Huillier achieved high harmonic generation in experiments when she transmitted infrared laser light through a noble gas. In 1993, the 3-step model of high harmonic generation was proposed by Kulander and Paul Corkum. In 2001, Pierre Agostini succeeded in producing attosecond pulse trains, in which each pulse lasted just 250 attoseconds. In the same year, Ferenc Krausz experimentally realized the first isolated attosecond pulse that lasted 650 attoseconds. After a long journey, humanity finally realized attosecond pulses of light and obtained the key to the electronic world. Nowadays, with the joint efforts of domestic and foreign researchers, attosecond pulses of light have already achieved the shortest pulse widths of 53 and 43 as, the highest photon energy of 1600 eV, the highest pulse energy of 240 nJ in the extreme ultraviolet band and pulse energies up to 10 nJ in the soft X-ray band. The attosecond pulses of light have been applied to various electronic dynamics studies, promoting the explanation of deep scientific problems in physics, chemistry, materials, biology, and other disciplines. To make breakthroughs and unleash the huge application potential of attosecond light sources, it has become an important development trend to build attosecond large-scale scientific facilities worldwide, for example, the European Extreme Light Infrastructure-Attosecond Light Pulse Source, and Advanced Attosecond Laser Infrastructure in China. The Nobel Prize in Physics 2023 has greatly inspired researchers in the field of attosecond science and technology. However, it is just the beginning for attosecond pulses, indicating that this field will have a more profound and extensive impact on mankind’s journey of exploring nature and innovating technology in the future. |
来源
|
科学通报
,2023,68(36):4927-4932 【核心库】
|
DOI
|
10.1360/TB-2023-1113
|
关键词
|
阿秒光脉冲
;
照亮通往物质
;
内部电子世界
|
地址
|
1.
中国科学院西安光学精密机械研究所阿秒科学与技术研究中心, 西安, 710119
2.
华东师范大学物理与电子科学学院, 上海, 200241
|
语种
|
中文 |
文献类型
|
其它 |
ISSN
|
0023-074X |
学科
|
物理学 |
文献收藏号
|
CSCD:7654834
|
参考文献 共
50
共3页
|
1.
Dantus M. Real-time femtosecond probing of "transition states'' in chemical reactions.
J Chem Phys,1987,87:2395-2397
|
CSCD被引
12
次
|
|
|
|
2.
Goppert-Mayer M. Uber elementarakte mit zwei quantensprungen.
Annalen der Physik,1931,401:273-294
|
CSCD被引
53
次
|
|
|
|
3.
Keldysh L V. Ionization in the field of a strong electromagnetic wave.
Sov Phys JETP,1965,20:1307-1314
|
CSCD被引
117
次
|
|
|
|
4.
Agostini P. Free-free transitions following six-photon ionization of xenon atoms.
Phys Rev Lett,1979,42:1127-1130
|
CSCD被引
100
次
|
|
|
|
5.
Mcpherson A. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases.
J Opt Soc Am B,1987,4:595-601
|
CSCD被引
111
次
|
|
|
|
6.
Ferray M. Multiple-harmonic conversion of 1064 nm radiation in rare gases.
J Phys B-At Mol Opt Phys,1988,21:L31-L35
|
CSCD被引
73
次
|
|
|
|
7.
Krause J L. High-order harmonic generation from atoms and ions in the high intensity regime.
Phys Rev Lett,1992,68:3535-3538
|
CSCD被引
82
次
|
|
|
|
8.
Corkum P B. Plasma perspective on strong field multiphoton ionization.
Phys Rev Lett,1993,71:1994-1997
|
CSCD被引
568
次
|
|
|
|
9.
Corkum P B. Subfemtosecond pulses.
Opt Lett,1994,19:1870-1872
|
CSCD被引
49
次
|
|
|
|
10.
Paul P M. Observation of a train of attosecond pulses from high harmonic generation.
Science,2001,292:1689-1692
|
CSCD被引
168
次
|
|
|
|
11.
Hentschel M. Attosecond metrology.
Nature,2001,414:509-513
|
CSCD被引
245
次
|
|
|
|
12.
Itatani J. Attosecond streak camera.
Phys Rev Lett,2002,88:173903
|
CSCD被引
53
次
|
|
|
|
13.
L'huillier A. Higher-order harmonic generation in xenon at 1064 nm: The role of phase matching.
Phys Rev Lett,1991,66:2200-2203
|
CSCD被引
2
次
|
|
|
|
14.
Constant E. Optimizing high harmonic generation in absorbing gases: Model and experiment.
Phys Rev Lett,1999,82:1668-1671
|
CSCD被引
20
次
|
|
|
|
15.
Chini M. The generation, characterization and applications of broadband isolated attosecond pulses.
Nat Photon,2014,8:178-186
|
CSCD被引
40
次
|
|
|
|
16.
Schultze M. Delay in photoemission.
Science,2010,328:1658-1662
|
CSCD被引
41
次
|
|
|
|
17.
Isinger M. Photoionization in the time and frequency domain.
Science,2017,358:893-896
|
CSCD被引
12
次
|
|
|
|
18.
Midorikawa K. Progress on table-top isolated attosecond light sources.
Nat Photonics,2022,16:267-278
|
CSCD被引
13
次
|
|
|
|
19.
Nisoli M. Attosecond electron dynamics in molecules.
Chem Rev,2017,117:10760-10825
|
CSCD被引
11
次
|
|
|
|
20.
Goulielmakis E. Real-time observation of valence electron motion.
Nature,2010,466:739-743
|
CSCD被引
67
次
|
|
|
|
|