激光增材制造Al_xCoCrFeNi高熵合金的组织与性能
Microstructure and properties of Al_xCoCrFeNi high entropy alloys fabricated by laser additive manufacturing
查看参考文献25篇
文摘
|
为了研究Al含量对FeCoCrNi合金组织性能的影响,采用多路送粉激光熔覆设备高通量制备Al_xCoCrFeNi高熵合金(0≤x≤0.9),通过X射线衍射仪、金相显微镜、扫描电子显微镜、电子探针和显微硬度计测试合金的相组成、显微组织结构、成分和硬度。结果表明:随着Al含量的增加,Al_xCoCrFeNi高熵合金由单一FCC相(x≤0.35)转变为FCC+BCC双相结构(0.35
|
其他语种文摘
|
In order to study the effect of Al content on the microstructure properties of FeCoCrNi alloy, Al_xCoCrFeNi high-entropy alloy (0≤x≤0.9) was prepared by multi-channel laser cladding. The phase composition, microstructure, chemical composition and hardness of the alloy were test by X-ray diffractometry, metallography microscope, scanning electron microscope, electron probe and microhardness tester. The results show that with the increase of Al content, Al_xCoCrFeNi high-entropy alloy changes from single FCC phase(x≤0.35) to FCC+BCC biphase structure(0.35<x<0.85), and finally to BCC structure (x≥0.85). The microstructure of the high entropy alloy consists of epitaxial columnar dendrites and uniform equiaxed dendrites. When Al content reaches to x=0.5, characteristic structure of spinodal decomposition with alternating light and dark contrast starts to appear between the dendrites, which consists of disordered phase A2 and ordered phase B2. The microhardness test results show that the microhardness of Al_xCoCrFeNi alloys almost increases with the increasing Al content and a total of 146% improvement has been achieved when the Al content increases from x=0 to x=0.9. It should be noted that cracks begin to appear in the alloy when the Al content increases to a certain value (x≥0.6). The size and density of cracks increase with the increase of Al content. There are two main reasons. Firstly, the hotcracking increases since the solidification range widen and their viscosity values near the solidification temperatures increase with the increasing Al content. Besides, cold cracking also increases as the brittle BCC and σ phases increase with the increasing Al content. |
来源
|
材料工程
,2024,52(1):220-230 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000781
|
关键词
|
激光熔覆
;
高熵合金
;
Al_xCoCrFeNi
;
相组成
;
微观组织
|
地址
|
1.
烟台大学精准材料高等研究院, 山东, 烟台, 264005
2.
中南大学, 粉末冶金国家重点实验室, 长沙, 410083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
泰山学者工程专项经费资助
;
山东省高等学校青年创新团队发展计划
|
文献收藏号
|
CSCD:7652207
|
参考文献 共
25
共2页
|
1.
Aizenshtein M. Microstructure, kinetics and thermodynamics of HEA Al_(0.5)CoCrFeNi at T≥800℃.
Materials Characterization,2021,171:110738
|
CSCD被引
1
次
|
|
|
|
2.
吴文恒. 选区激光熔化成形Al系高熵合金的研究进展.
粉末冶金工业,2021,31(4):1-10
|
CSCD被引
2
次
|
|
|
|
3.
袁碧亮. 增材制造AlxCoCrFeNi系高熵合金的研究进展.
材料导报,2021,35(增刊2):417-423
|
CSCD被引
3
次
|
|
|
|
4.
Ocelik V. Additive manufacturing of high-entropy alloys by laser processing.
JOM,2016,68(7):1810-1818
|
CSCD被引
17
次
|
|
|
|
5.
王雪娇. 激光熔覆层裂纹的控制方法及研究进展.
金属加工(热加工),2022(10):13-19
|
CSCD被引
2
次
|
|
|
|
6.
Butler T M. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys.
Journal of Alloys and Compounds,2016,674:229-244
|
CSCD被引
21
次
|
|
|
|
7.
Wang W R. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys.
Intermetallics,2012,26:44-51
|
CSCD被引
128
次
|
|
|
|
8.
Butler T M. Investigation of the phase stabilities in AlNiCoCrFe high entropy alloys.
Journal of Alloys and Compounds,2017,691:119-129
|
CSCD被引
8
次
|
|
|
|
9.
Wang W R. Phases,microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures.
Journal of Alloys and Compounds,2014,589:143-152
|
CSCD被引
59
次
|
|
|
|
10.
Rao J C. The fcc-bcc crystallographic orientation relationship in AlxCoCrFeNi highentropy alloys.
Materials Letters,2016,176:29-32
|
CSCD被引
2
次
|
|
|
|
11.
Joseph J. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys.
Materials Science and Engineering:A,2015,633:184-193
|
CSCD被引
29
次
|
|
|
|
12.
侯锁霞. 激光熔覆层裂纹的产生和抑制方法.
材料导报,2021,35(增刊1):352-356
|
CSCD被引
11
次
|
|
|
|
13.
邓操. Al含量对选区激光熔化Al_xCoCrFeNi(x=0.3,0.5,0.7,1.0)的显微组织及纳米压痕的影响.
材料工程,2022,50(6):27-35
|
CSCD被引
1
次
|
|
|
|
14.
王艳丽. 合金成分对定向凝固柱晶高温合金热裂倾向性的影响.
材料工程,2009(6):35-38
|
CSCD被引
7
次
|
|
|
|
15.
刘小辉. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状.
材料工程,2022,50(8):1-16
|
CSCD被引
6
次
|
|
|
|
16.
Haasec. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys-towards rapid alloy screening and design.
Materials Science and Engineering: A,2017,688:180-189
|
CSCD被引
16
次
|
|
|
|
17.
Li M. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropyalloys produced by a high-throughput laser deposition method.
Intermetallics,2018,95:110-118
|
CSCD被引
15
次
|
|
|
|
18.
Huang W D.
Laser solid forming,2007
|
CSCD被引
2
次
|
|
|
|
19.
Chen Y. Interactive optimization of process parameters and coating analysis of lasercladding JG-3 powder.
The International Journal of Advanced Manufacturing Technology,2020,107(5):2623-2633
|
CSCD被引
3
次
|
|
|
|
20.
Wang P. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder.
Materials & Design,2019,168:107576
|
CSCD被引
17
次
|
|
|
|
|