TiZrAlHf钛基中熵合金热变形及组织演变规律
Hot deformation and microstructure evolution of TiZrAlHf Ti-based medium entropy alloy
查看参考文献32篇
文摘
|
为优化新型TiZrAlHf钛基中熵合金的热加工窗口,采用热压缩模拟实验和组织表征的方法对热变形特性、热变形组织演变规律进行研究。结果表明:TiZrAlHf合金铸锭的组织主要由片层状α相和晶界处的魏氏组织组成。合金β转变温度(Tβ)为895 ℃,在α/α+β相区(700~850 ℃)测试工艺范围内变形时,变形温度700~750 ℃之间存在失稳区,热变形激活能为827.514 kJ/mol,变形组织主要为球状α相,软化机制为片层状α相球化;在β相区(900~1100 ℃)测试工艺范围内,加工图中不存在失稳区,同时所有试样均完好,无开裂,能够采用自由锻造的方式进行开坯及改锻,热变形激活能为113.909 kJ/mol,变形组织主要为拉长的β晶粒和内部的针状α'马氏体,软化机制为动态回复;两种变形软化机制的本质均为位错的增殖、滑移和胞状结构演化。 |
其他语种文摘
|
In order to optimize the hot working window of the novel TiZrAlHf Ti-based medium entropy alloy, the thermal deformation characteristics and microstructural evolution during thermal deformation were investigated by using hot compression simulation experiments and microstructural characterization methods. The results show that the microstructure of TiZrAlHf alloy ingot primarily consists of lamellar α phase and Widmanstatten structure at grain boundaries. The β transformation temperature (Tβ) of TiZr- AlHf alloys is 895 ℃. Within the α/α+β phase region(700-850 ℃) during deformation, an instability zone is identified within the temperature range of 700-750 ℃. The thermal deformation activation energy in the α/α+β phase region is 827.514 kJ/mol, the deformation microstructure predominantly comprised globular α phase, with the softening mechanism involving the globularization of lamellar α phase. When the alloy is deformed in the β phase region (900-1100 ℃) test process range, there is no instability zone in hot processing map, all samples remain intact without any signs of cracking. Consequently, free forging can be employed for roughing and finish forging operations. The hot deformation activation energy is 113.909 kJ/mol,and the deformation microstructure is mainly elongated β grains and acicular martensite α'. The softening mechanism in the region is dynamic recovery. The underlying nature of both deformation softening mechanisms lies in the proliferation of dislocations, slip and the evolution of cellular structures. |
来源
|
材料工程
,2024,52(1):128-136 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000549
|
关键词
|
钛基中熵合金
;
热变形
;
组织演变
;
α 相球化
;
动态回复
|
地址
|
1.
燕山大学, 亚稳材料制备技术与科学国家重点实验室, 河北, 秦皇岛, 066004
2.
中国航发北京航空材料研究院, 先进钛合金航空科技重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7652197
|
参考文献 共
32
共2页
|
1.
贾岳飞. 轻质高熵合金研究现状.
材料导报,2020,34(17):17003-17017
|
CSCD被引
6
次
|
|
|
|
2.
Liao Y C. Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)_(100-x) mediumentropy alloys.
Intermetallics,2020,117:106673
|
CSCD被引
14
次
|
|
|
|
3.
Yurchenko N Y. Structure and mechanical properties of B_2 ordered refractory AlNbTiVZrx (x=0-1.5) high-entropy alloys.
Materials Science and Engineering:A,2017,704:82-90
|
CSCD被引
44
次
|
|
|
|
4.
Jiang W T. Microstructure and mechanical properties of AlNbTiVZr system refractory high entropy alloys.
Journal of Alloys and Compounds,2022,925:166767
|
CSCD被引
5
次
|
|
|
|
5.
刘宏武. Al_(25)Nb_(20)Ti_(30)Zr_(25)低密度高熵合金的组织和性能.
金属热处理,2022,47(2):20-25
|
CSCD被引
3
次
|
|
|
|
6.
Zhang X. Macro-micro behaviors of Ti-22Al-26Nb alloy during warm tension.
Materials Science and Engineering:A,2022,850:143580
|
CSCD被引
2
次
|
|
|
|
7.
Zhao Q Y. Processing of metastable beta titanium alloy: Comprehensive study on deformation behaviour and exceptional microstructure variation mechanisms.
Journal of Materials Science & Technology,2022,126(31):22-43
|
CSCD被引
5
次
|
|
|
|
8.
Kanayo K A. Hot deformability, microstructural evolution and processing map assessment of high entropy alloys: a systematic review.
Journal of Materials Research and Technology,2023,26:1754-1784
|
CSCD被引
1
次
|
|
|
|
9.
Gao P F. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review.
Journal of Materials Science & Technology,2020,39(4):56-73
|
CSCD被引
43
次
|
|
|
|
10.
Li T X. Hot deformation behavior and microstructure evolution of non-equimolar Ti_2ZrHfV_(0.5)Ta_(0.2) refractory high-entropy alloy.
Intermetallics,2022,146:107586
|
CSCD被引
6
次
|
|
|
|
11.
陈慧琴. 钛合金热变形机制及微观组织演变规律的研究进展.
材料工程,2007(1):60-64
|
CSCD被引
21
次
|
|
|
|
12.
Zhang Z. Microstructure/texture evolution maps to optimize hot deformation process of near-α titanium alloy.
Progress in Natural Science: Materials International,2020,30(1):86-93
|
CSCD被引
1
次
|
|
|
|
13.
Jiang X J. Grain refinement and tensile properties of a metastable TiZrAl alloy fabricated by stress-induced martensite and its reverse transformation.
Materials Science and Engineering: A,2018,722:8-13
|
CSCD被引
5
次
|
|
|
|
14.
Wei J. Understanding processing map and microstructural evolution of powder metallurgy Ti-6Al-4V within a wide range of deformation temperatures.
Journal of Alloys and Compounds,2022,927:167061
|
CSCD被引
1
次
|
|
|
|
15.
Lei W. Study on hot deformation behavior of as-cast Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy in(α+ β) phase region.
Materials Today Communications,2023,35:105797
|
CSCD被引
1
次
|
|
|
|
16.
田壵. 耦合氢含量的置氢Ti65高温钛合金本构方程.
锻压技术,2023,48(6):204-213
|
CSCD被引
2
次
|
|
|
|
17.
Zhu Y. Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map.
Materials Science and Engineering:A,2011,528(3):1757-1763
|
CSCD被引
31
次
|
|
|
|
18.
Wanjara P. Hot working behavior of near-α alloy IMI834.
Materials Science and Engineering: A,2004,396(1):50-60
|
CSCD被引
1
次
|
|
|
|
19.
Lypchanskyi O. Hot deformation behavior of Ti-Al-Sn-Zr-Mo alloy.
Procedia Manufacturing,2020,50:63-68
|
CSCD被引
1
次
|
|
|
|
20.
冯秋元. Ti60高温钛合金的热变形行为I:本构方程.
塑性工程学报,2021,28(11):158-166
|
CSCD被引
14
次
|
|
|
|
|