Mo元素对Al_(0.3)CrFeCoNiMo_x高熵合金组织结构、力学性能和腐蚀行为的影响
Effects of Mo element on microstructure, mechanical properties and corrosion behavior of Al_(0.3)CrFeCoNiMo_x high-entropy alloys
查看参考文献41篇
文摘
|
为提高Al-Cr-Fe-Co-Ni系高熵合金的力学性能和耐腐蚀性能,研究Mo元素对Al_(0.3)CrFeCoNiMo_x (x= 0.2,0.4, 0.6,0.8,摩尔比,下同)高熵合金的组织结构、力学性能及腐蚀行为的影响。结果表明:随着Mo元素含量的提高,合金由FCC相(x=0.2)转变为FCC+σ双相结构(x=0.4~0.8)。当Mo元素含量由x=0.2增加到x=0.8时,合金的压缩屈服强度和硬度分别由304 MPa和214HV提高到1192 MPa和513HV,塑性应变由>50%降低到5.2%,这主要是由于固溶强化作用和σ相含量增加。该合金系中,Al_(0.3)CrFeCoNiMo0.4和Al_(0.3)CrFeCoNiMo0.6合金具有较高的屈服强度(571~776 MPa)和较好的塑性(塑性应变10.3%~23.8%)。在3.5%(质量分数)NaCl溶液中,Al_(0.3)CrFeCoNiMo_x高熵合金发生自钝化,具有较低的腐蚀速率(3.6×10~(-4)~5.9×10~(-4) mm/a),且Mo元素的添加有效抑制了点蚀的发生。合金的耐腐蚀性能随着Mo含量的增加而提高,这与合金表面形成的钝化膜阻抗值和厚度提高有关。适当添加Mo元素可以使Al-Cr- Fe-Co-Ni系合金同时具有良好的力学性能和耐腐蚀性能。 |
其他语种文摘
|
In order to improve the mechanical properties and corrosion resistance of Al-Cr-Fe-Co-Ni system high-entropy alloys (HEAs),the effects of Mo on the microstructure,mechanical properties and corrosion behavior of the Al_(0.3)CrFeCoNiMo_x (x=0.2,0.4,0.6,0.8,molar ratio,the same below) HEAs were studied. The results show that the microstructures of the HEAs evolve from the FCC phase (x=0.2) to the FCC+ σ phases (x=0.4-0.8) with the increase of Mo content. The compressive yield strength and hardness of the HEAs are enhanced from 304 MPa and 214HV (x=0.2) to 1192 MPa and 513HV (x= 0.8), respectively,while the plastic strain decreases from >50% to 5.2%, mainly due to the solution strengthening and the increase in σ phase of the alloys. Among the present alloys system,the Al_(0.3)CrFeCoNiMo0.4 and Al_(0.3)CrFeCoNiMo0.6 alloys show relatively high yield strength (571-776 MPa) combined with good plasticity (plastic strain of 10.3%-23.8%). In 3.5%(mass fraction) NaCl solution, the Al_(0.3)CrFeCoNiMo_x HEAs are spontaneously passivated and exhibited low corrosion rates of 3.6×10~(-4)- 5.9×10~(-4) mm/a,and the addition of Mo effectively suppresses pitting corrosion. The corrosion resistance of the Al_(0.3)CrFeCoNiMo_x HEAs could be improved with the increase of Mo content,which is related to the increment in the electrochemical impedance and the thicknesses of the passive films on the alloys. Appropriate addition of Mo to the Al-Cr-Fe-Co-Ni system HEAs can lead to a combination of good mechanical properties and corrosion resistance. |
来源
|
材料工程
,2024,52(1):118-127 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000529
|
关键词
|
高熵合金
;
组织结构
;
力学性能
;
腐蚀行为
|
地址
|
北京航空航天大学材料科学与工程学院, 北京, 100191
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7652196
|
参考文献 共
41
共3页
|
1.
Cantor B. Microstructural development in equiatomic multicomponent alloys.
Materials Science and Engineering: A,2004,375/377:213-218
|
CSCD被引
691
次
|
|
|
|
2.
Yeh J W. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1343
次
|
|
|
|
3.
Miracle D B. A critical review of high entropy alloys and related concepts.
Acta Materialia,2017,122:448-511
|
CSCD被引
580
次
|
|
|
|
4.
Ye Y F. High-entropy alloy: challenges and prospects.
Materials Today,2016,19(6):349-362
|
CSCD被引
229
次
|
|
|
|
5.
Wang W R. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys.
Intermetallics,2012,26:44-51
|
CSCD被引
128
次
|
|
|
|
6.
Lu Y P. A promising new class of high-temperature alloys: eutectic high-entropy alloys.
Scientific Reports,2014,4:6200
|
CSCD被引
181
次
|
|
|
|
7.
Wang Y P. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy.
Materials Science and Engineering:A,2008,491:154-158
|
CSCD被引
43
次
|
|
|
|
8.
高炜. Cr对FeCoNiAlCr_x高熵合金组织与力学性能的影响.
材料工程,2023,51(2):91-97
|
CSCD被引
6
次
|
|
|
|
9.
Cantor B. Multicomponent high-entropy alloys.
Progress in Materials Science,2021,120:100754
|
CSCD被引
40
次
|
|
|
|
10.
Tsai K Y. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys.
Acta Materialia,2013,61(13):4887-4897
|
CSCD被引
165
次
|
|
|
|
11.
Senkov O N. Refractory high-entropy alloys.
Intermetallics,2010,18(9):1758-1765
|
CSCD被引
245
次
|
|
|
|
12.
姜萱. 难熔高熵合金制备及性能研究进展.
材料工程,2022,50(3):33-42
|
CSCD被引
17
次
|
|
|
|
13.
武俊霞. 难熔高熵合金成分设计微观组织及性能研究进展.
航空材料学报,2022,42(6):33-47
|
CSCD被引
13
次
|
|
|
|
14.
Yang W. Design and properties of novel Ti-Zr-Hf-Nb-Ta high-entropy alloys for biomedical applications.
Intermetallics,2022,141:107421
|
CSCD被引
3
次
|
|
|
|
15.
Xie X C. Research Progress of Refractory High Entropy Alloys:A Review.
Chinese Journal of Mechanical Engineering,2022,35:142
|
CSCD被引
7
次
|
|
|
|
16.
Feng R. Phase stability and transformation in a lightweight high-entropy alloy.
Acta Materialia,2018,146:280-293
|
CSCD被引
17
次
|
|
|
|
17.
Stepanov N D. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy.
Materials Letters,2015,142:153-155
|
CSCD被引
61
次
|
|
|
|
18.
Feng R. Design of light-weight high-entropy alloys.
Entropy,2016,18:333
|
CSCD被引
32
次
|
|
|
|
19.
Chen J. Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy.
Materials & Design,2016,94:39-44
|
CSCD被引
20
次
|
|
|
|
20.
Zhang G J. Effect of Fe on microstructure and properties of AlCoCrFexNi (x=1.5, 2.5) high entropy alloy coatings prepared by laser cladding.
Intermetallics,2020,119:106722
|
CSCD被引
15
次
|
|
|
|
|