增材制造AlCoCrFeNi_(2.1)共晶高熵合金研究进展
Research progress in additive manufacturing of AlCoCrFeNi_(2.1) eutectic highentropy alloys
查看参考文献72篇
文摘
|
AlCoCrFeNi_(2.1)共晶高熵合金具备细小、均匀、规则的片层结构,在较宽的温度(70~1000 K)和成分偏差范围内均具备良好的组织结构和强塑性兼备的力学性能,因而成为目前研究最为广泛的共晶高熵合金。本文针对增材制造AlCoCrFeNi_(2.1)共晶高熵合金,综述了不同工艺和工艺参数对该合金的微观组织和力学性能的影响,重点阐述了选区激光熔化技术制备AlCoCrFeNi_(2.1)共晶高熵合金的相分布、微观组织和强化机制。最后,指出当前增材制造AlCoCrFeNi_(2.1)共晶高熵合金相形成机理及组织演化过程中存在的分歧和不足,并提出以AlCoCrFeNi_(2.1)共晶高熵合金为基体的材料改性、增材制造高熵合金新工艺研究开发等发展方向,为推动该合金的工业化应用提供思路。 |
其他语种文摘
|
AlCoCrFeNi_(2.1) eutectic high-entropy alloy is characterized by a fine, homogeneous, and regular lamellar structure, as well as good organizational structure and mechanical properties with both strength and plasticity over a wide range of temperature (70-1000 K) and compositional deviation, thus making it the most widely studied eutectic high-entropy alloy at present. In this paper, regarding the additive manufacturing of AlCoCrFeNi_(2.1) eutectic high-entropy alloy, the influence of different processes and process parameters on the microstructure and mechanical properties of the alloy was reviewed, and the phase distribution, microstructure, and strengthening mechanism of AlCoCrFeNi_(2.1) eutectic high-entropy alloy prepared by the selective laser melting technology were highlighted. Finally, it points out the differences and deficiencies in phase formation mechanism and organization evolution process of the current additive manufacturing AlCoCrFeNi_(2.1) eutectic high-entropy alloy and puts forward the development direction of material modification of AlCoCrFeNi_(2.1) eutectic high-entropy alloy as the substrate of the material modification and the new technology of additive manufacturing high-entropy alloy, which will provide ideas for the promotion of the industrialized application of the alloy. |
来源
|
材料工程
,2024,52(1):70-82 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000568
|
关键词
|
AlCoCrFeNi_(2.1)共晶高熵合金
;
增材制造
;
微观组织
;
力学性能
;
强化机制
|
地址
|
火箭军工程大学作战保障学院, 西安, 710000
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7652192
|
参考文献 共
72
共4页
|
1.
Lu Y. Promising properties and future trend of eutectic high entropy alloys.
Scripta Materialia,2020,187:202-209
|
CSCD被引
49
次
|
|
|
|
2.
焦文娜. 共晶高熵合金的研究进展及展望.
特种铸造及有色合金,2022,42(3):265-274
|
CSCD被引
3
次
|
|
|
|
3.
Lu Y. A promising new class of hightemperature alloys: eutectic high-entropy alloys.
Sci Rep,2014,4:6200
|
CSCD被引
181
次
|
|
|
|
4.
魏水淼. 高熵合金增材制造研究进展.
材料工程,2021,49(10):1-17
|
CSCD被引
7
次
|
|
|
|
5.
Tofail S A. Additive manufacturing: scientific and technological challenges, market uptake and opportunities.
Materials Today,2018,21(1):22-37
|
CSCD被引
46
次
|
|
|
|
6.
黄思睿. 共晶高熵合金的研究进展.
材料导报,2020,34(17):17077-17081
|
CSCD被引
3
次
|
|
|
|
7.
李涤尘. 增材制造:实现宏微结构一体化制造.
机械工程学报,2013,49(6):129-135
|
CSCD被引
105
次
|
|
|
|
8.
Gu D. Material-structureperformance integrated laser-metal additive manufacturing.
Science,2021,372(6545):eabg1487
|
CSCD被引
136
次
|
|
|
|
9.
Raut L P. Wire arc additive manufacturing: a comprehensive review and research directions.
Journal of Materials Engineering and Performance,2021,30(7):4768-4791
|
CSCD被引
7
次
|
|
|
|
10.
Mcandrew A R. Interpass rolling of Ti-6Al-4V wire+ arc additively manufactured features for microstructural refinement.
Additive Manufacturing,2018,21:340-349
|
CSCD被引
24
次
|
|
|
|
11.
Svetlizky D. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications.
Materials Today,2021,49:271-295
|
CSCD被引
25
次
|
|
|
|
12.
Izadi M. A review of laser engineered net shaping (LENS) build and process parameters of metallic parts.
Rapid Prototyping Journal,2020,26(6):1059-1078
|
CSCD被引
4
次
|
|
|
|
13.
Zhu Y. Enabling stronger eutectic high-entropy alloys with larger ductility by 3D printed directional lamellae.
Additive Manufacturing,2021,39:101901
|
CSCD被引
12
次
|
|
|
|
14.
Unocic R. Process efficiency measurements in the laser engineered net shaping process.
Metallurgical and Materials Transactions B,2004,35(1):143-152
|
CSCD被引
8
次
|
|
|
|
15.
Murr L E. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies.
Journal of Materials Science & Technology,2012,28(1):1-14
|
CSCD被引
88
次
|
|
|
|
16.
Williams S W. Wire+ arc additive manufacturing.
Materials Science and Technology,2016,32(7):641-647
|
CSCD被引
86
次
|
|
|
|
17.
Ngo T D. Additive manufacturing(3D printing): a review of materials, methods, applications and challenges.
Composites Part B,2018,143:172-196
|
CSCD被引
221
次
|
|
|
|
18.
Tong Z. Improving the strength and ductility of laser directed energy deposited CrMnFeCoNi highentropy alloy by laser shock peening.
Additive Manufacturing,2020,35:101417
|
CSCD被引
12
次
|
|
|
|
19.
Ren J. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing.
Nature,2022,608(7921):62-68
|
CSCD被引
44
次
|
|
|
|
20.
Yu W H. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review.
Progress in Materials Science,2019,104:330-379
|
CSCD被引
41
次
|
|
|
|
|