高熵合金动态力学行为研究进展
Research progress in dynamic mechanical behavior of high-entropy alloys
查看参考文献86篇
文摘
|
高熵合金具有高强韧、高耐磨、强耐腐蚀和抗高温氧化等优异特性,因此在能源化工、航空航天和国防等领域展现出良好的潜在应用前景。动态载荷下,高熵合金表现出更高强度、更多孪晶和绝热剪切带等异于准静态载荷下的力学行为,并且不同相结构对高熵合金动态性能和变形机理具有显著影响。此外,动态载荷下高熵合金因表现出较好的释能特性,而在结构释能材料领域具有一定研究价值。通常动态实验稳定性较差,测试难度大;但通过本构模型与实验验证相结合的方式,可较好地预测高熵合金的动态力学性能。基于上述分析,本文综述了不同相结构高熵合金的动态力学行为、释能特性和本构模型,并对上述性能特点及其本构模型和模拟计算等方面进行了展望。最后指出高熵合金的动态力学性能可以通过调控元素种类及其配比和相结构及其浓度分布等进行改善;同时温度和应变速率等因素对高熵合金动态力学行为的影响机制需要深入研究;而模型计算在揭示其高应变速率下的变形机制和性能预测方面发挥更大作用。 |
其他语种文摘
|
High-entropy alloys exhibit excellent properties such as high strength and toughness,good wear resistance,superb corrosion resistance and superior high-temperature oxidation resistance,which have good potential applications in terms of energy chemical industry,aerospace and national defense. The mechanical behavior of high-entropy alloys under the condition of dynamic loading is different from that under the quasistatic loading,presenting higher strength,more twins and adiabatic shear bands and so on. And different phase structures have a significant impact on the dynamic properties and deformation mechanism of highentropy alloys. Moreover,the high-entropy alloys have a certain research value in the field of energetic structural materials due to their good energy release characteristics under the condition of dynamic loading. Usually,the stability of dynamic experiment is unacceptable and the test is also difficult to achieve. In contrast,the dynamic mechanical properties of high-entropy alloys can be well predicted based on the constitutive models with experimental verification. As above-mentioned analysis,the dynamic mechanical behavior of high-entropy alloys with different phase structures,energy release characteristics and constitutive models were reviewed. Meanwhile,the comprehensive properties and their constitutive models as well as the simulation calculations were prospected. Finally,it is pointed out that the dynamic mechanical properties of high-entropy alloys can be improved by adjusting the type and proportion of elements,phase structure and concentration distribution. At the same time,the influence mechanism of temperature and strain rate on the dynamic mechanical behavior of high-entropy alloy needs further study. The model calculation also needs to play a greater role in revealing its deformation mechanism and predicting its performance at high strain rate. |
来源
|
材料工程
,2024,52(1):57-69 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000874
|
关键词
|
高熵合金
;
动态力学行为
;
释能特性
;
本构模型
|
地址
|
1.
长沙理工大学汽车与机械工程学院, 长沙, 410114
2.
军事科学院国防科技创新研究院, 北京, 100071
3.
浙江大学海洋学院, 浙江, 舟山, 316021
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;金属学与金属工艺 |
基金
|
国家重点研发计划项目
;
国家自然科学基金项目
;
湖南省科技创新计划
|
文献收藏号
|
CSCD:7652191
|
参考文献 共
86
共5页
|
1.
Yeh J W. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1343
次
|
|
|
|
2.
Shun T T. Formation of ordered/disordered nanoparticles in FCC high entropy alloys.
Journal of Alloys and Compounds,2010,493(1):105-109
|
CSCD被引
22
次
|
|
|
|
3.
Zhang L S. Recent progress in highentropy alloys.
Advanced Materials Research,2013,631/632(6):227-232
|
CSCD被引
11
次
|
|
|
|
4.
高炜. Cr对FeCoNiAlCr_x高熵合金组织与力学性能的影响.
材料工程,2023,51(2):91-97
|
CSCD被引
6
次
|
|
|
|
5.
Miracle D B. A critical review of high entropy alloys and related concepts.
Acta Materialia,2017,122(1):448-511
|
CSCD被引
580
次
|
|
|
|
6.
Rogal L. Microstructure and mechanical properties of the novel Hf_(25)Sc_(25)Ti_(25)Zr_(25) equiatomic alloy with hexagonal solid solutions.
Materials & Design,2016,92:8-17
|
CSCD被引
13
次
|
|
|
|
7.
Shi Y Z. Corrosion of AlxCoCrFeNi highentropy alloys:Al-content and potential scan-rate dependent pitting behavior.
Corrosion Science,2017,119:33-45
|
CSCD被引
85
次
|
|
|
|
8.
Shi Y Z. Corrosion resistant high-entropy alloys:a review.
Metals,2017,7(2):43
|
CSCD被引
50
次
|
|
|
|
9.
Wu J M. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content.
Wear,2006,261(5):513-519
|
CSCD被引
114
次
|
|
|
|
10.
Hsu C Y. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl_(0.5)Fe alloy with boron addition.
Metallurgical and Materials Transactions A,2004,35(5):1465-1469
|
CSCD被引
83
次
|
|
|
|
11.
Senkov O N. Mechanical properties of Nb_(25)Mo_(25)Ta_(25)W_(25) and V_(20)Nb_(20)Mo_(20)Ta_(20)W_(20) refractory high entropy alloys.
Intermetallics,2011,19(5):698-706
|
CSCD被引
295
次
|
|
|
|
12.
Wu Z. Recovery,recrystallization,grain growth and phase stability of a family of FCC-structured multicomponent equiatomic solid solution alloys.
Intermetallics,2014,46:131-140
|
CSCD被引
56
次
|
|
|
|
13.
Nagase T. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM).
Intermetallics,2015,59:32-42
|
CSCD被引
22
次
|
|
|
|
14.
Kumar N A P K. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation.
Acta Materialia,2016,113:230-244
|
CSCD被引
55
次
|
|
|
|
15.
Tang Z. Fatigue behavior of a wrought Al_(0.5)CoCrCuFeNi two-phase high-entropy alloy.
Acta Materialia,2015,99:247-258
|
CSCD被引
35
次
|
|
|
|
16.
Chen Y Y. Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel.
Corrosion Science,2005,47(9):2257-2279
|
CSCD被引
46
次
|
|
|
|
17.
Deng Y. Design of a twinning-induced plasticity high entropy alloy.
Acta Materialia,2015,94:124-133
|
CSCD被引
60
次
|
|
|
|
18.
Gludovatz B. A fracture-resistant high-entropy alloy for cryogenic applications.
Science,2014,345(6201):1153-1158
|
CSCD被引
515
次
|
|
|
|
19.
王睿鑫. 高熵合金动态载荷下变形机制的研究进展.
材料导报,2021,35(17):17001-17009
|
CSCD被引
4
次
|
|
|
|
20.
王睿鑫.
NbZrTiTa高熵合金的组织结构演变及结构释能特性研究,2018
|
CSCD被引
5
次
|
|
|
|
|