高熵合金热变形行为研究进展
Research progress in hot deformation behavior of high entropy alloys
查看参考文献81篇
文摘
|
高熵合金颠覆了传统合金以一、两种元素为主的设计思想,其多主元和高混合熵的设计理念赋予了其高强、高韧、耐蚀、耐高温和抗氧化等优异的性能,已成为新型高性能结构材料领域的一个研究热点。高熵合金研发必然要走向工程应用,热加工是其中进一步调控组织性能的重要途径,表征热加工性能的热变形行为是一个新的研究重点和热点。本文从高熵合金热变形研究的现状出发,首先,将高熵合金按相结构进行分类总结,介绍其热变形本构关系和流变应力预测模型。然后,分析FCC,FCC+BCC和BCC结构高熵合金的热变形组织演变,系统综述热变形过程中的变形机制和再结晶机制。最后,强调了高熵合金热变形研究所面临的挑战,并对其未来研究方向提出以下建议:建立基于高熵合金物理性质的本构关系和结构特征的再结晶模型;加强不同制备工艺条件下和复杂载荷作用下的热变形行为研究,突破高熵合金关键制备工艺。 |
其他语种文摘
|
The high entropy alloy overturns the traditional design idea that one or two elements are the main elements, and its design concept of multi-element and high mixing entropy endows it with excellent properties such as high strength, high toughness, corrosion resistance, high temperature resistance and oxidation resistance, etc.,making high entropy alloy being a research hotspot in the field of new highperformance structural materials. The research and development of high entropy alloys will inevitably lead to engineering application, where hot working is an important way to further control the microstructure and properties. As a result, the hot deformation behavior which characterizes the hot working properties has become a new research emphasis and hotspot. Based on the research status of hot deformation, the high entropy alloys were classified according to phase structure firstly, and the constitutive relation of hot deformation and prediction model of flow stress were introduced. Then, microstructure evolution of high entropy alloys with FCC, FCC+BCC and BCC structures during hot deformation was analyzed. On this basis, deformation mechanism and recrystallization mechanism during hot deformation were summarized. Finally, the challenges faced by hot deformation of high entropy alloys in the future are emphasized, and some suggestions for research trends in the future are put forward as follows: establishing constitutive relation based on physical properties of high entropy alloys, constructing recrystallization model based on structural characteristics of high entropy alloy, strengthening systematic study of hot deformation behavior under different preparation conditions and complex loads, and breaking through the key preparation process of high entropy alloy. |
来源
|
材料工程
,2024,52(1):45-56 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000617
|
关键词
|
高熵合金
;
热变形
;
本构关系
;
组织演变
;
变形机制
;
再结晶机制
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
北京科技大学碳中和研究院, 北京, 100083
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划项目
;
快速扶持项目
|
文献收藏号
|
CSCD:7652190
|
参考文献 共
81
共5页
|
1.
Yeh J. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6:299-303
|
CSCD被引
1343
次
|
|
|
|
2.
Senkov O N. Accelerated exploration of multi-principal element alloys with solid solution phases.
Nature Communications,2015,6:6529
|
CSCD被引
56
次
|
|
|
|
3.
Liang Y J. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys.
Nature Communications,2018,9:4063
|
CSCD被引
82
次
|
|
|
|
4.
Jiang H. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability.
Scripta Materialia,2019,165:145-149
|
CSCD被引
18
次
|
|
|
|
5.
孙辉. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响.
材料工程,2022,50(1):127-134
|
CSCD被引
4
次
|
|
|
|
6.
于秋颖. 不同成分下铸态AlMoNbTaTiZr高熵合金显微组织的研究.
机械工程学报,2021,57(6):96-105
|
CSCD被引
3
次
|
|
|
|
7.
张聪. 高通量计算与机器学习驱动高熵合金的研究进展.
材料工程,2023,51(3):1-16
|
CSCD被引
9
次
|
|
|
|
8.
武俊霞. 难熔高熵合金成分设计微观组织及性能研究进展.
航空材料学报,2022,42(6):33-47
|
CSCD被引
13
次
|
|
|
|
9.
刘庆琦. Al_(19.3)Co_(15)Cr_(15)Ni_(50.7)高熵合金的热变形行为.
金属学报,2021,57(10):1299-1308
|
CSCD被引
4
次
|
|
|
|
10.
Senkov O N. Mechanical properties of Nb_(25)Mo_(25)Ta_(25)W_(25) and V_(20)Nb_(20)Mo_(20)Ta_(20)W_(20) refractory high entropy alloys.
Intermetallics,2011,19:698-706
|
CSCD被引
295
次
|
|
|
|
11.
Stepanov N D. High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy.
Materials Science and Engineering:A,2015,636:188-195
|
CSCD被引
10
次
|
|
|
|
12.
Li J. High temperature deformation behavior of carbon-containing FeCoCrNiMn high entropy alloy.
Journal of Alloys and Compounds,2018,747:571-579
|
CSCD被引
3
次
|
|
|
|
13.
Jeong H. Operation of solutedrag creep in an AlCoCrFeMnNi high-entropy alloy and enhanced hot workability.
Journal of Alloys and Compounds,2020,824:153829
|
CSCD被引
1
次
|
|
|
|
14.
Emdadi A. Complex dynamic restoration processes leading to a high degree of deformability in a dual-phase Al_(0.5)CoCrFeNi high entropy alloy.
Journal of Alloys and Compounds,2022,918:165583
|
CSCD被引
1
次
|
|
|
|
15.
Wang Y F. An efficient way to induce recrystallization of deformed Al_(0.1)CoCrFeNi high-entropy alloy.
Materials Letters,2023,331:133531
|
CSCD被引
1
次
|
|
|
|
16.
Wang J. Constitutive equation and microstructure analysis of Al_(0.6)CoCrFeNi high entropy alloy during hot deformation.
Philosophical Magazine,2022,102:1684-1707
|
CSCD被引
1
次
|
|
|
|
17.
Guo Y N. Unique strength-ductility balance of AlCoCrFeNi 2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting.
Journal of Materials Science and Technology,2022,111:298-306
|
CSCD被引
19
次
|
|
|
|
18.
Bai Z C. Unique deformation behavior and microstructure evolution in high-temperature processing of a low-density TiAlVNb_2 refractory high-entropy alloy.
Journal of Alloys and Compounds,2021,885:160962
|
CSCD被引
1
次
|
|
|
|
19.
Dong F. Hot deformation behavior and processing maps of an equiatomic MoNbHfZrTi refractory high entropy alloy.
Intermetallics,2020,126:106921
|
CSCD被引
4
次
|
|
|
|
20.
Kim W. The effect of Al to hightemperature deformation mechanisms and processing maps of Al_(0.5)CoCrFeMnNi high entropy alloy.
Journal of Alloys and Compounds,2019,802:152-165
|
CSCD被引
8
次
|
|
|
|
|