具有BCC或FCC晶体结构的固溶体高熵合金设计
Design of solid solution high entropy alloys with BCC or FCC crystal structures
查看参考文献98篇
文摘
|
高熵合金最初报道于21世纪初期,该类合金具有较高的混合熵值,使其具有优异的热稳定性;较大的晶格畸变,产生了强烈固溶强化效果;较大的负焓值导致在晶粒内部形成团簇结构,有效阻碍了位错运动,进一步提高了合金强度。高熵合金独有的这些特性,使其在低温和高温条件下均有望表现出优异的物理性能和力学性能,引起了广泛的关注,研究报道呈爆发性增长。本文根据已有的BCC和FCC结构高熵合金物理-力学性能数据,分析了电子浓度、晶格常数、原子错配度、混合焓、硬度、弹性模量和归一化硬度等参数之间的关系,提出了BCC和FCC晶体结构的高熵合金弹性模量和硬度的经验计算公式,在此基础之上,综合考虑合金密度、塑性和服役工况等条件,提出了BCC和FCC结构的高熵合金成分设计方法。最后指出高熵合金的持久性能、大尺寸铸锭的成分和性能均匀性以及大尺寸合金锭的制备是高熵合金工程应用需解决的关键问题。 |
其他语种文摘
|
High entropy alloys (HEAs) were first reported in the early 2000s. High mixing entropy of the HEAs makes it present good thermal stability. Meanwhile,the large lattice distortion in the HEAs leads to significant solution strengthening. Additionally,cluster structures are formed within grains due to the large negative enthalpy. Consequently,the movement of dislocation is effectively hindered,and the strength of the HEAs is remarkably improved. Given to these unique characteristics, the HEAs is expected to have excellent physical and chemical properties at low and high temperatures. As a result,the HEAs have become a hot area with lots of published research papers. Based on existing physical and mechanical properties of the HEAs with BCC and FCC structure, relation among electron concentration,lattice constant,atomic mismatch,mixing enthalpy,hardness,elasticity modulus and normalized hardness were analyzed to develop a formula calculating elasticity modulus and hardness of the HEAs. On this basis,the composition design method of the HEAs with BCC and FCC structures is established by considering density,ductility and working environment. Finally,it is pointed out that the persistent strength of HEAs, the uniformity of composition and properties of large-sized ingots,and the preparation of large-sized alloy ingots are key issues that need to be addressed in the engineering application of HEAs. |
来源
|
材料工程
,2024,52(1):16-26 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.001600
|
关键词
|
高熵合金
;
电子浓度
;
晶格常数
;
晶格畸变
;
混合焓
;
硬度
;
弹性模量
;
归一化硬度
|
地址
|
乌克兰国家科学院弗兰采维奇材料问题研究所, 乌克兰, 基辅, 03680
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7652188
|
参考文献 共
98
共5页
|
1.
Ranganathan S. Alloyed pleasures:multimetallic cocktails.
Current Science,2003,85:1404-1406
|
CSCD被引
94
次
|
|
|
|
2.
Cantor B. Microstructural development in equiatomic multicomponent alloys.
Materials Science and Engineering:A,2004,375:213-218
|
CSCD被引
691
次
|
|
|
|
3.
Yeh J W. Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6:299-303
|
CSCD被引
1343
次
|
|
|
|
4.
Canton B. Novel multicomponent alloys.
Journal of Metastable and Nanocrystalline Materials,2005,24/25:1-6
|
CSCD被引
1
次
|
|
|
|
5.
Yeh J W. Recent progress in high-entropy alloys.
Ann Chim Sci Mater,2006,31:633-648
|
CSCD被引
173
次
|
|
|
|
6.
Murty B S.
High-entropy alloys. 2nd ed,2019:363
|
CSCD被引
1
次
|
|
|
|
7.
Cantor B. Multicomponent and high entropy alloys.
Entropy,2014,16:4749-4768
|
CSCD被引
28
次
|
|
|
|
8.
Firstov S A. Mechanical properties of cast multicomponent alloys at high temperatures.
Modern Problems of the Physical Materials Science,2008,17:126-139
|
CSCD被引
1
次
|
|
|
|
9.
Hache M J R. Nanostructured highentropy materials.
Journal of Materials Research,2020,35:1051-1075
|
CSCD被引
6
次
|
|
|
|
10.
George E P. High entropy alloys: a focused review of mechanical properties and deformation mechanisms.
Acta Materialia,2020,188:435-474
|
CSCD被引
104
次
|
|
|
|
11.
Firstov S A. Hardening and mechanical properties of cast high entropy alloys.
Composites and Nanomaterials,2011,2:5-20
|
CSCD被引
1
次
|
|
|
|
12.
姜萱. 难熔高熵合金制备及性能研究进展.
材料工程,2022,50(3):33-42
|
CSCD被引
17
次
|
|
|
|
13.
Zhang Y. Solid solution formation criteria for high entropy alloys.
Materials Science Forum,2007,561/565:1337-1339
|
CSCD被引
20
次
|
|
|
|
14.
Senkov O N. Refractory high-entropy alloys.
Intermetallics,2010,9:1758-1765
|
CSCD被引
245
次
|
|
|
|
15.
Guo S. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys.
Journal of Applied Physics,2011,109:103505
|
CSCD被引
203
次
|
|
|
|
16.
Yang X. Prediction of high-entropy stabilized solid-solution in multi-component alloys.
Mater Chem Phys,2012,132:233-238
|
CSCD被引
217
次
|
|
|
|
17.
Firstov S A. Structural materials research:effect of electron density on phase composition of high-entropy equiatomic alloys.
Powder Metallurgy and Metal Ceramics,2016,54:607-613
|
CSCD被引
2
次
|
|
|
|
18.
Gao M C.
High-entropy alloys:fundamentals and applications,2016
|
CSCD被引
6
次
|
|
|
|
19.
Canton B. Stable and metastable multicomponent alloys.
Ann Chim Sci Mater,2007,32:245-256
|
CSCD被引
1
次
|
|
|
|
20.
Gorban V F. Highentropy alloys:interrelations between electron concentration, phase composition,lattice parameter,and properties.
Physics of Metals and Metallography,2017,118(10):970-981
|
CSCD被引
3
次
|
|
|
|
|