禾谷镰孢染色质缩合调节因子FgRCC1的功能分析
Functional analysis of the regulator of chromatin condensation FgRCC1 in Fusarium graminearium
查看参考文献43篇
文摘
|
小麦赤霉病是影响小麦产量与粮食安全的重大真菌病害之一,其主要致病菌为禾谷镰孢(Fusarium graminearum) 。染色质缩合调节因子(RCC1)作为一种核蛋白,能促进Ran结合的GDP/GTP转换,在染色质缩合起始、核质转运和有丝分裂过程中起关键作用,但其在丝状真菌中的功能尚未见报道。本研究通过基因敲除的方法,获得了禾谷镰孢中基因FgRCC1的敲除突变体ΔFgRCC1和互补菌株ΔFgRCC1-C。通过表型测定分析,发现敲除突变体ΔFgRCC1的生长速率较野生型菌株PH-1和ΔFgRCC1-C降低约8.5%,且菌丝分枝变多。敲除突变体ΔFgRCC1的分生孢子产量降低约8.8%,并且隔膜数在4和5个的分生孢子比例明显增多。此外,敲除突变体ΔFgRCC1对杀菌剂戊唑醇变得敏感,而对多菌灵、刚果红、SDS、KCl、CaCl_2、MgCl_2的抗性增强。致病性测定发现,ΔFgRCC1在小麦上的致病力下降,并且其体内毒素体形成受阻,DON毒素生物合成显著减少,7种TRIs转录水平显著降低。研究结果表明,染色质缩合调节因子FgRCC1在禾谷镰孢菌丝生长、参与逆境胁迫以及致病和产毒过程中有重要作用。 |
其他语种文摘
|
Fusarium head blight is one of the major fungal diseases affecting the yield of wheat and food security. The main pathogen is Fusarium graminearum. Regulator of chromatin condensation (RCC1) is a nuclear protein that promotes the Ran-bound GDP/GTP exchange and plays a significant role in chromosome condensation onset,nucleo-cytoplasmic transport and mitosis. However,function of RCC1 in filamentous fungi remains unclear until now. In this study,FgRCC1 gene null mutant ΔFgRCC1 and complementary strain ΔFgRCC1-C in F. graminearum,was obtained by gene disruption approach. Phenotype analysis showed that the growth rate of ΔFgRCC1 was about 8.5% slower than that of wild type PH-1 and ΔFgRCC1-C,but had more branching in the hypha. Conidiation of ΔFgRCC1 mutant decreased by 8.8% and percentage of conidia with 4 to 5 septa was significantly increased. In addition,ΔFgRCC1 became sensitive to tebuconazole,but more resistant to carbendazim,congo red,SDS,KCl,CaCl_2,and MgCl_2. Pathogenicity assays indicated that the virulence of ΔFgRCC1 on wheat was seriously reduced,and the formation of toxisome was blocked resulting in dramatic reduction of DON biosynthesis,the transcription levels of seven TRIs were significantly reduced. Taken together, these results indicate that FgRCC1 plays important roles in the regulation of fungal growth,virulence and DON biosynthesis,as well as various stress responses in F. graminearum. |
来源
|
植物病理学报
,2023,53(6):1096-1106 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000852
|
关键词
|
禾谷镰孢
;
染色质缩合调节因子
;
生长发育
;
逆境胁迫
;
致病性
|
地址
|
安徽农业大学植物保护学院, 作物有害生物综合治理安徽省重点实验室, 合肥, 230036
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:7645758
|
参考文献 共
43
共3页
|
1.
Wei Y M. Origin,spread and evolution of wheat in China (in Chinese).
麦类作物学报,2021,41(3):305-309
|
CSCD被引
1
次
|
|
|
|
2.
Liu W C. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years (in Chinese).
植物保护,2016,42(5):1-19
|
CSCD被引
5
次
|
|
|
|
3.
O'Donnell K. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade.
Fungal Genetics and Biology,2004,41(6):600-623
|
CSCD被引
39
次
|
|
|
|
4.
Wagacha J M. Fusarium culmorum: Infection process,mechanisms of mycotoxin production and their role in pathogenesis in wheat.
Crop Protection,2007,26(7):877-885
|
CSCD被引
2
次
|
|
|
|
5.
Audenaert K. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment.
Toxins,2014,6(1):1-19
|
CSCD被引
15
次
|
|
|
|
6.
Zhang W W. The recent Fusarium mycotoxin situation in grain and feed in China.
World Mycotoxin Journal,2015,8(5):545-551
|
CSCD被引
1
次
|
|
|
|
7.
Chen Y. Current situation and management strategies of Fusarium head blight in China (in Chinese).
植物保护,2017,43(5):11-17
|
CSCD被引
8
次
|
|
|
|
8.
Ohtsubo M. The RCC1 protein,a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA.
Journal of Cell Biology,1989,109(4 Pt 1):1389-1397
|
CSCD被引
2
次
|
|
|
|
9.
Daytt-Castro M. The small GTPases in fungal signaling conservation and function.
Cells,2021,10(5):1-29
|
CSCD被引
3
次
|
|
|
|
10.
Schmoll M. The genomes of three uneven siblings: footprints of the lifestyles of three Trichoderma species.
Microbiology and Molecular Biology Reviews,2016,80(1):205-327
|
CSCD被引
1
次
|
|
|
|
11.
Tran E J. Dynamic nuclear pore complexes: Life on the edge.
Cell,2006,125(6):1041-1053
|
CSCD被引
8
次
|
|
|
|
12.
Fried H. Nucleocytoplasmic transport: taking an inventory.
Cellular and Molecular Life Sciences,2003,60(8):1659-1688
|
CSCD被引
4
次
|
|
|
|
13.
Kuersten S. Nucleocytoplasmic transport: Ran,beta and beyond.
Trends in Cell Biology,2001,11(12):497-503
|
CSCD被引
2
次
|
|
|
|
14.
Schwartz T U. Modularity within the architecture of the nuclear pore complex.
Current Opinion in Structural Biology,2005,15(2):221-226
|
CSCD被引
3
次
|
|
|
|
15.
Ryan K J. The Ran GTPase cycle is required for yeast nuclear pore complex assembly.
Journal of Cell Biology,2003,160(7):1041-1053
|
CSCD被引
4
次
|
|
|
|
16.
Monecke T. Crystal structure of the nuclear export receptor CRM1 in complex with snurportin1 and RanGTP.
Science,2009,324(5930):1087-1091
|
CSCD被引
2
次
|
|
|
|
17.
Ye S. Progress of study on GTPbinding Proteins in plant (in Chinese).
山东农业科学,2008(5):27-33
|
CSCD被引
1
次
|
|
|
|
18.
Akhtar N. Functional analysis of the yeast Ran exchange factor Prp20p: in vivo evidence for the RanGTP gradient model.
Molecular Genetics and Genomics,2001,265(5):851-864
|
CSCD被引
1
次
|
|
|
|
19.
Zheng H. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearum.
Environmental Microbiology,2015,17(11):4580-4599
|
CSCD被引
9
次
|
|
|
|
20.
Yang C. FgVps9,a Rab5 GEF,is critical for DON biosynthesis and pathogenicity in Fusarium graminearum.
Frontiers in Microbiology,2020(11):1714
|
CSCD被引
1
次
|
|
|
|
|