多花黄精叶斑病病原菌的鉴定、生物学特性及杀菌剂对其的抑制作用
Identification,biological characterization and inhibitory effect of fungicides on the pathogen causing Polygonatum cyrtonema
查看参考文献21篇
文摘
|
采集具有典型叶斑病症状的多花黄精(Polygonatum cyrtonema)叶片,分离其病原菌,利用形态学和多基因联合分析对病原菌进行鉴定,研究病原菌的生物学特性,并采用菌丝生长速率法测定杀菌剂对其菌落生长的抑制作用。结果表明,分离出的病原菌分生孢子无色,大多梨形或长梨形,大小为(10 ~ 12) μm×(5 ~ 7) μm,多基因联合分析表明该病原菌与首都叶点霉(Phyllosticta capitalensis)的同源性达到100%;结合形态学特征和多基因序列分析确定病原菌为首都叶点霉(Ph. capitalensis),这是首都叶点霉(Ph. capitalensis)侵染多花黄精的首次报道; PDA培养基有利于菌丝生长和产孢,25 ℃条件下菌丝生长最快、且产孢量最大,pH为5.0~ 10.0时菌丝均可生长,最适pH为7.0,菌丝生长最适碳源为蔗糖、最适氮源为胰蛋白胨,产孢最适碳源为葡萄糖,但酵母、甘氨酸、牛肉膏均不产孢;光暗交替适宜其生长、光照条件可促使病原菌产孢;在测试的9种药剂中,三唑酮EC_(50) = 0.292 mg·L~(-1)对首都叶点霉(Ph. capitalensis)菌丝生长的抑制作用较强。该研究结果为生产上防治多花黄精叶斑病提供了理论依据。 |
其他语种文摘
|
The authors in this study collected Polygonatum cyrtonema leaves with typical symptoms of leaf spot disease,isolated its fungal pathogen,identified the fungal pathogen by adopting morphological characteristics and polygene sequence analysis,probed deep into the biological characteristics of the fungal pathogen,and determined the inhibitory effect of fungicides on its colony growth using the mycelial growth rate method. As clearly illustrated by the results,the conidia of the isolated fungal pathogen are colorless,and most of them are pear or long pear-shaped,with the size of (10-12) μm × (5-7) μm. As evidently proven by the combined analysis of multiple genes,the pathogen has 100% homology with Phyllostacta capitalensis. Combined with morphological characteristics and polygene sequence analysis,the pathogen was identified as Ph. capitalensis,which is the first report of Ph. capitalensis infecting Po. cyrtonema; PDA medium is advantageous for mycelial growth and sporulation. To be specific,the mycelium grows fastest and produces the largest number of spores at 25 ℃. When the pH is 5.0 -10.0,the mycelium can grow. The optimum pH for spore production is 7.0. The optimum carbon and nitrogen sources for mycelium growth are sucrose and trypsin,respectively,and the optimum carbon source for spore production is glucose. Nonetheless,no spore was produced when yeast,glycine,and beef extract were used as nitrogen sources. Light and dark alternation are suitable for its growth,and light conditions can facilitate the spore production of pathogen. Among the nine tested drugs,triadimefon,EC_(50) = 0.292 mg·L~(-1),has a strong inhibitory effect on Ph. capitalinsis. The results obtained in this study provide a theoretical basis for the control of Po. cyrtonema in production. |
来源
|
植物病理学报
,2023,53(6):1038-1046 【核心库】
|
DOI
|
10.13926/j.cnki.apps.001027
|
关键词
|
多花黄精
;
叶点霉
;
分离鉴定
;
多基因系统发育分析
;
生物学特性
;
抑制作用
|
地址
|
1.
重庆三峡学院生物与食品工程学院, 重庆, 404120
2.
三峡库区道地药材绿色种植与深加工重庆市工程实验室, 三峡库区道地药材绿色种植与深加工重庆市工程实验室, 重庆, 404120
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
重庆市技术创新与应用发展专项重点项目
|
文献收藏号
|
CSCD:7645752
|
参考文献 共
21
共2页
|
1.
Chinese Pharmacopoeia Commission.
Pharmacopoeia of the People's Republic of China 2015 (in Chinese),2015
|
CSCD被引
1
次
|
|
|
|
2.
Rodrigues C M. Comparative genome analysis of Phyllosticta citricarpa and Phyllosticta capitalensis,two fungi species that share the same host.
BMC Genomics,2019,20(1):2-12
|
CSCD被引
1
次
|
|
|
|
3.
He M X. A new disease of Camellia japonica caused by Phyllosticta capitalensis the"green island type"leafspot (in Chinese).
园艺学报,2020,47(1):179-186
|
CSCD被引
1
次
|
|
|
|
4.
Esmaeilzadeh A. First report of Phyllosticta capitalensis causing leaf spots on ornamental Magnolia grandiflora and Syringa reticulata in Iran.
New Disease Reports,2020(1):7
|
CSCD被引
2
次
|
|
|
|
5.
Liao Y. First report of Phyllosticta capitalensis causing black spot disease on Psidium guajava in mainland China.
Plant Disease,2020,104(12):1-2
|
CSCD被引
1
次
|
|
|
|
6.
Cheng L L. Phyllosticta capitalensis causes leaf spot on tea plant (Camellia sinensis) in China.
Plant Disease,2019,103(11):2964-2965
|
CSCD被引
3
次
|
|
|
|
7.
Fang Z D.
Research methods of plant pathology (3rd edition) (in Chinese),1998:122-124
|
CSCD被引
1
次
|
|
|
|
8.
Dong H S.
Plant disease research method (in Chinese),2012:188-230
|
CSCD被引
1
次
|
|
|
|
9.
White T J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylo genetics.
PCR Protocols: a Guide to Methods and Applications. 18(1),1990:315-322
|
CSCD被引
2
次
|
|
|
|
10.
Carbone I. A method for designing primer sets for speciation studies in filamentous ascomycetes.
Mycologia,1999,91(3):553-556
|
CSCD被引
186
次
|
|
|
|
11.
Redpath N T. Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signaling pathway.
EMBO Journal,1996,15(9):2291-2297
|
CSCD被引
7
次
|
|
|
|
12.
Zhao J S. Estimation of probit methods on EC50 (in Chinese).
生态毒理学报,2010,5(3):420-425
|
CSCD被引
1
次
|
|
|
|
13.
Wei J C.
Fungal identification handbook (in Chinese),1979:315-322
|
CSCD被引
1
次
|
|
|
|
14.
Chen Y. Identification and biological characteristics of Dalbergia odorifera leaf blight (in Chinese).
热带作物学报,2020,41(5):1007-1012
|
CSCD被引
1
次
|
|
|
|
15.
Kirschner R. Phyllosticta capitalensis sporulating on ginkgo leaves in Taiwan.
Plant Pathology & Quarantine,2018(1):10-13
|
CSCD被引
1
次
|
|
|
|
16.
Zhu L. Identification of the pathogen causing foot rot of Fortunella margarita (Lour.) Swingle. (in Chinese).
植物病理学报,2011,41(6):631-634
|
CSCD被引
1
次
|
|
|
|
17.
Guo X Y. Isolation and identification of a pathogen causing guava black spot (in Chinese).
食品工业科技,2022,43(10):158-164
|
CSCD被引
1
次
|
|
|
|
18.
Fayed Eman A. Evaluation of quinoxaline derivatives as potential ergosterol biosynthesis inhibitors: design,synthesis,ADMET, molecular docking studies,and antifungal activities.
Journal of Molecular Structure,2022,21(5):1267
|
CSCD被引
1
次
|
|
|
|
19.
Liu S. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon.
Environmental Toxicology and Pharmacology,2011,32(3):472-477
|
CSCD被引
11
次
|
|
|
|
20.
Li M. Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles.
Aquatic Toxicology,2016,177(5):190-197
|
CSCD被引
6
次
|
|
|
|
|