石墨烯增强钛基复合材料界面调控及强韧化机理研究进展
Interface controlling and mechanisms of strengthening and toughening of graphene reinforced titanium matrix composites
查看参考文献101篇
文摘
|
高超声速飞行器等航空装备的快速发展对钛合金综合性能及应用水平提出更高要求。采用传统热工艺技术制备钛合金的性能已经接近或达到理论极限。传统技术很难大幅提高钛合金的综合性能,探寻石墨烯技术改性钛合金成为一个重要发展方向。然而,钛合金中石墨烯的界面反应控制难度大,如何获得具有良好结合强度的石墨烯/钛界面是石墨烯增强钛基复合材料性能提升的基础与关键。本文在分析制约石墨烯增强钛基复合材料发展系列问题基础上,重点介绍石墨烯增强钛基复合材料微观组织、界面特征以及静态/动态力学性能、摩擦磨损、抗氧化性能和石墨烯强韧化机理等方面的研究进展,探讨现阶段解决石墨烯增强钛基复合材料分散均匀性、界面结合性和组织致密性的方案和优缺点,最后指出该类型材料在界面调控、大规模制备和性能稳定性等方面技术面临的挑战,并提出该类型材料发展应与理论计算技术、先进制备技术和特种功能应用相结合,深化界面优化设计和可控制备,拓宽应用领域。 |
其他语种文摘
|
The rapid development of aviation equipment such as hypersonic aircraft has put forward higher requirement for the comprehensive properties and application levels of titanium alloys. The properties of titanium alloys prepared by traditional thermal technologies have approached or reached the theoretical limit. Traditional technologies have been difficult to greatly improve the comprehensive properties of titanium alloys,and exploring graphene technology to modify titanium alloys has become an important development direction. However, it is difficult to control the interface reaction of graphene in titanium alloys. How to obtain the graphene/titanium interfaces with high bonding strength is the key to improve the performance of graphene reinforced titanium matrix composites. Based on the analysis of the problems restricting the development of graphene reinforced titanium matrix composites, this paper emphatically introduces the research progresses of microstructures, interface characteristics, static/dynamic mechanical properties, friction and wear properties, oxidation resistances, and strengthening and toughening mechanisms. The advantages and disadvantages of current solutions for dispersion uniformity, interface bonding and microstructure compactness are discussed. The challenges of interface control technology,large-scale preparation technology and performance stability of graphene reinforced titanium matrix composites are pointed out. Finally,it is proposed that such materials should be combined with theoretical calculation technologies, advanced preparation technologies and special function applications to deepen the interface optimization design and controllable preparation, and the application field expansion. |
来源
|
航空材料学报
,2023,43(6):20-35 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000150
|
关键词
|
石墨烯增强钛基复合材料
;
组织和界面
;
性能
;
强化机理
;
制备技术
|
地址
|
1.
中国航发北京航空材料研究院, 航空先进钛合金重点实验室, 北京, 100095
2.
辽宁工程技术大学机械工程学院, 辽宁, 阜新, 123000
3.
清华大学新材料国际研发中心, 北京, 100084
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
一般工业技术;航空 |
基金
|
国家自然科学基金“叶企孙”科学基金
;
中国航发自主创新专项
|
文献收藏号
|
CSCD:7642444
|
参考文献 共
101
共6页
|
1.
Peters M. Titanium alloys for aerospace applications.
Advanced Engineering Materials,2003,5(6):419-427
|
CSCD被引
53
次
|
|
|
|
2.
Leyes C.
Titanium and titanium alloys,2003
|
CSCD被引
1
次
|
|
|
|
3.
蔡建明. 航空发动机用先进高温钛合金材料技术研究与发展.
材料工程,2016,44(8):1-10
|
CSCD被引
61
次
|
|
|
|
4.
曹京霞. 高温钛合金制造技术研究进展.
钛工业进展,2018,35(1):1-8
|
CSCD被引
7
次
|
|
|
|
5.
张蕾涛. 钛合金表面激光熔覆涂层的研究进展.
表面技术,2020,49(8):97-104
|
CSCD被引
22
次
|
|
|
|
6.
王欣. 航空航天用钛合金表面工程技术研究进展.
航空制造技术,2022,65(4):14-24
|
CSCD被引
19
次
|
|
|
|
7.
Hayatb M D. Titanium metal matrix composites: an overview.
Composites Part A,2019,121:418-438
|
CSCD被引
1
次
|
|
|
|
8.
张丹丹. 石墨烯增强金属基航空复合材料研究进展.
材料工程,2019,47(1):1-10
|
CSCD被引
7
次
|
|
|
|
9.
Tabie V M. Microstructure and mechanical properties of particle reinforced high-temperature titanium composites.
European Physical Journal-Applied Physics,2023,98:3
|
CSCD被引
1
次
|
|
|
|
10.
Lee C. Measurement of the elastic properties and intrinsic strength of monolayer graphene.
Science,2008,321:385-388
|
CSCD被引
1357
次
|
|
|
|
11.
Cao C. High strength measurement of monolayer graphene oxide.
Carbon,2015,81:497-504
|
CSCD被引
9
次
|
|
|
|
12.
Dadkhah M. An overview of the recent developments in metal matrix nanocomposites reinforced by graphene.
Materials,2019,12:2823
|
CSCD被引
4
次
|
|
|
|
13.
吴明宇. 碳纳米材料改性TiAl基合金技术发展现状及展望.
航空材料学报,2020,40(3):45-62
|
CSCD被引
3
次
|
|
|
|
14.
晏琪. 碳纳米材料增强钛基复合材料研究进展.
中国材料进展,2019,38(11):1061-1073
|
CSCD被引
7
次
|
|
|
|
15.
Mu X N. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites.
Materials Science and Engineering: A,2017,687:164-174
|
CSCD被引
17
次
|
|
|
|
16.
Chen H. Excellent high-temperature strength and ductility of graphene oxide reinforced high-temperature titanium alloy matrix composite fabricated by hot isostatic pressing and heat treatment.
Composites Communications,2022,30:101077
|
CSCD被引
1
次
|
|
|
|
17.
陈航. 氧化石墨烯对近α型高温钛合金非等温氧化行为的影响机理.
稀有金属材料与工程,2022,51(8):2899-2906
|
CSCD被引
2
次
|
|
|
|
18.
Yu J S. Enhanced mechanical and tribological properties of graphene nanoplates reinforced TC21 composites using spark plasma sintering.
Journal of Alloys and Compounds,2021,873:159764
|
CSCD被引
1
次
|
|
|
|
19.
Saboori A. An overview of key challenges in the fabrication of metal matrix nanocomposites reinforced by graphene nanoplatelets.
Metals,2018,8:172
|
CSCD被引
6
次
|
|
|
|
20.
弭光宝.
一种石墨烯和钛合金复合粉末球磨制备方法:ZL201810164736.0,2019
|
CSCD被引
1
次
|
|
|
|
|