六分量地震观测在工程勘查中的应用试验
A case study:application of six-component seismic observations in urban engineering investigation
查看参考文献39篇
文摘
|
利用面波频散曲线反演地下介质的S波速度结构,是浅层工程地震领域一种重要的方法技术.传统的面波法包括主被动源的面波多道分析方法(MASW)和被动源的空间自相关(SPAC)方法,均需要多台地震仪同时记录地面振动;而记录平动和旋转运动的单台站六分量地震数据理论上也可以获得面波频散曲线.本文以河北唐山城区煤矿采空区浅层工程勘探实际六分量地震数据为例,对比了利用单台站六分量地震数据与主、被动源法多台站提取的Rayleigh波频散曲线.试验结果表明利用纵波扫描可控震源时,30Hz以下频段利用单台站六分量地震数据提取的基阶Rayleigh波频散曲线与主、被动源MASW方法提取的频散曲线结果一致,说明在浅层工程地震勘查中,利用单物理点的六分量地震观测反演浅层横波速度是可行的. |
其他语种文摘
|
Using the surface wave dispersion curves to invert the S-wave velocity of subsurface media is an important method in shallow engineering seismic exploration.Traditional surface wave analysis methods include Multichannel Analysis of Surface Waves(MASW)and Spatial Auto-correlation(SPAC),which require the use of z-component or 3-component leveling seismometer arrays to simultaneously record ground motion.However,the surface wave dispersion curves can be theoretically obtained by recording only the six-component seismic data from a single station with translational and rotational motions.A case study of shallow engineering exploration in Tangshan City is introduced in this paper.Through comparing the Rayleigh wave dispersion curves extracted with different observations,the experiment shows that,when the P-wave vibroseis is used as the seismic vibration source,the fundamental Rayleigh wave dispersion curve below 30Hz extracted from the six-component seismic data with only single-station observation is consistent with the dispersion curves extracted with array of geophones.The study suggests that in the shallow engineering seismic exploration,it is feasible and convenient to invert the S-wave velocity of subsurface media by using six-component seismic data instead of dense translational observations. |
来源
|
地球物理学报
,2024,67(1):308-317 【核心库】
|
DOI
|
10.6038/cjg2023Q0195
|
关键词
|
面波
;
频散曲线
;
主被动源
;
六分量
;
基阶
|
地址
|
1.
中国地质大学(北京)地球物理与信息技术学院, 北京, 100083
2.
北京自动化控制设备研究所, 北京, 100074
3.
中国科学院地球化学研究所, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0001-5733 |
学科
|
地质学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7634619
|
参考文献 共
39
共2页
|
1.
Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors.
Earthq. Res. Inst., Univ. Tokyo,1957,35(3):415-456
|
CSCD被引
1
次
|
|
|
|
2.
Bensen G D. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements.
Geophysical Journal International,2007,169(3):1239-1260
|
CSCD被引
302
次
|
|
|
|
3.
Cao Y W. The development of a new IFOG-based 3Crotational seismometer.
Sensors,2021,21(11):3899
|
CSCD被引
6
次
|
|
|
|
4.
Capon J. High-resolution frequency-wavenumber spectrum analysis.
Proceedings of the IEEE,1969,57(8):1408-1418
|
CSCD被引
392
次
|
|
|
|
5.
Cheng F. Multichannel analysis of passive surface waves based on crosscorrelations.
Geophysics,2016,81(5):EN57-EN66
|
CSCD被引
14
次
|
|
|
|
6.
Cochard A. Rotational motions in seismology:Theory,observation,simulation.
Earthquake Source Asymmetry, Structural Media and Rotation Effects,2006:391-411
|
CSCD被引
7
次
|
|
|
|
7.
Ferreira A M G. Rotational motions of seismic surface waves in a laterally heterogeneous earth.
Bulletin of the Seismological Society of America,2009,99(2B):1429-1436
|
CSCD被引
4
次
|
|
|
|
8.
Hadziioannou C. Examining ambient noise using colocated measurements of rotational and translational motion.
Journal of Seismology,2012,16(4):787-796
|
CSCD被引
9
次
|
|
|
|
9.
Igel H. Rotational motions induced by the M8.1Tokachi-Oki earthquake,September 25, 2003.
Geophysical Research Letters,2005,32(8):L08309
|
CSCD被引
18
次
|
|
|
|
10.
Igel H. Broad-band observations of earthquake-induced rotational ground motions.
Geophysical Journal International,2007,168(1):182-196
|
CSCD被引
17
次
|
|
|
|
11.
Kurrle D. Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations?.
Geophysical Research Letters,2010,37(4):L04307
|
CSCD被引
7
次
|
|
|
|
12.
Lacoss R T. Estimation of seismic noise structure using arrays.
Geophysics,1969,34(1):21-38
|
CSCD被引
19
次
|
|
|
|
13.
Lawrence J F. Attenuation tomography of the western United States from ambient seismic noise.
Journal of Geophysical Research:Solid Earth. B,2011,116(B6):B06302
|
CSCD被引
7
次
|
|
|
|
14.
Lee W H K. Recent advances in rotational seismology.
Seismological Research Letters,2009,80(3):479-490
|
CSCD被引
13
次
|
|
|
|
15.
Lin C J. Rotational motions for teleseismic surface waves.
GeophysicalResearchLetters,2011,38(15):L15301
|
CSCD被引
6
次
|
|
|
|
16.
Luo Y H. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform.
Pure and Applied Geophysics,2008,165(5):903-922
|
CSCD被引
34
次
|
|
|
|
17.
McMechan G A. Analysis of dispersive waves by wave field transformation.
Geophysics,1981,46(6):869-874
|
CSCD被引
39
次
|
|
|
|
18.
Park C B. Imaging dispersion curves of surface waves on multi-channel record.
SEG Technical Program Expanded Abstracts 1998,1998:1377-1380
|
CSCD被引
5
次
|
|
|
|
19.
Park C B. Multichannel analysis of surface waves.
Geophysics,1999,64(3):800-808
|
CSCD被引
127
次
|
|
|
|
20.
Park C B. Multichannel analysis of surface waves(MASW)-active and passive methods.
The Leading Edge,2007,26(1):60-64
|
CSCD被引
15
次
|
|
|
|
|