MXene@聚苯胺基聚氨酯复合涂层的制备及防腐性能
Preparation and anticorrosion property of MXene@PANI based PU composite coating
查看参考文献31篇
文摘
|
为提高聚苯胺(PANI)/聚氨酯(PU)涂层对腐蚀介质的物理屏障性能,引入二维片层材料是有效方法之一。以2, 4-二异氰酸甲苯酯(TDI)和3,3′-二氯-4,4′-二氨基二苯基甲烷(MOCA)为原料合成聚氨酯(PU)涂层基体,将PANI与二维Ti_3C_2Tx进行插层反应制成MXene@PANI复合物,再将MXene@PANI添加到PU树脂中,得到MXene@PANI/PU防护涂层。结果表明:MXene/PANI质量比为1∶1时,经盐雾实验60天后MXene@PANI/PU涂层表面无明显腐蚀现象,腐蚀电流为3.709×10~(-9) A·cm~(-2),阻抗模值为1.93×10~8 Ω·cm~2。这归因于一方面MXene改善PANI的电化学活性,提高PANI的电化学防腐蚀性能;另一方面,Ti_3C_2Tx纳米片可作为二维屏障,抑制腐蚀性介质进入涂层内部,提高其长效防护性能。 |
其他语种文摘
|
In order to enhance the physical barrier performance of polyaniline(PANI)/polyurethane(PU) coating against corrosive medium, the introduction of two-dimensional material in the coating is one of the effective methods. PU coating matrix was synthesized from 2,4-diisocyanate (TDI) and 3,3′-dichloro-4, 4′-diamino diphenylmethane(MOCA),and MXene@PANI was synthesized by intercalation reaction of PANI with Ti_3C_2Tx.Then protective coating of MXene@PANI/PU was obtained by adding MXene@PANI into PU.The results show that when the mass ratio of MXene/PANI is 1∶1, no obvious corrosion occurs on the surface of the MXene@PANI/PU coating after 60 days of salt spraying.The corrosion current is 3.709×10~(-9) A·cm~(-2), and the impedance modulus is 1.93×10~8 Ω·cm~2.The reason is that MXene improves the electrochemical activity of PANI and thus enhances the electrochemical anticorrosion performance of PANI.On the other hand, MXene nanoplates as a two-dimensional barrier can prevent the corrosive medium from entering into the coating, which improves the long-term protective performance of the coating. |
来源
|
材料工程
,2023,51(12):143-150 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000446
|
关键词
|
聚苯胺
;
Ti_3C_2Tx
;
复合物
;
聚氨酯
;
防腐性能
|
地址
|
西安工业大学材料与化工学院, 西安, 710021
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金项目
;
陕西省重点研发计划一般项目-工业领域
|
文献收藏号
|
CSCD:7633509
|
参考文献 共
31
共2页
|
1.
Ye C B. Metal corrosion is serious, and waterborne epoxy anticorrosive coatings have become a trend.
Corrosion and Protection in Petrochemical Industry,2017,34(1):29-31
|
CSCD被引
4
次
|
|
|
|
2.
Liu D. Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C_(60) and graphene.
Surface and Coatings Technology,2016,286:354-364
|
CSCD被引
36
次
|
|
|
|
3.
Pourhashem S. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide.
Surface and Coatings Technology,2017,317:1-9
|
CSCD被引
26
次
|
|
|
|
4.
Yuan R X. Superamphiphobic and electroactive nanocomposite toward self-cleaning, antiwear, and anticorrosion coatings.
ACS Applied Materials and Interfaces,2016,8(19):12481-12493
|
CSCD被引
20
次
|
|
|
|
5.
Khedkar J. Sliding wear behavior of PTFE composites.
Wear,2002,252(5/6):361-369
|
CSCD被引
71
次
|
|
|
|
6.
Mccook N L. Wear resistant solid lubricant coating made from PTFE and epoxy.
Tribology Letters,2005,18(1):119-124
|
CSCD被引
7
次
|
|
|
|
7.
Contri G. Epoxy coating based on montmorillonite-polypyrrole: electrical properties and prospective application on corrosion protection of steel.
Progress in Organic Coatings,2018,114:201-207
|
CSCD被引
3
次
|
|
|
|
8.
Sheng X X. Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti_3C_2 MXene nanosheets.
Journal of Materials Science,2021,56:4212-4224
|
CSCD被引
9
次
|
|
|
|
9.
Shen J T. Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO_2 particles.
Wear,2015,322/323:171-180
|
CSCD被引
20
次
|
|
|
|
10.
卢勇. 聚苯胺复合涂层在钢材上的防腐应用及发展趋势.
材料工程,2018,46(8):27-35
|
CSCD被引
4
次
|
|
|
|
11.
井新利. 二氧化硅/聚苯胺复合粒子的制备与性能.
材料工程,2004(1):20-24
|
CSCD被引
9
次
|
|
|
|
12.
Bernhard W. Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes.
Advanced Materials,1994,6(3):226-228
|
CSCD被引
57
次
|
|
|
|
13.
Lu W K. Corrosion protection of mild steel by coatings containing polyaniline.
Synthetic Metals,1995,71(1/3):2163-2166
|
CSCD被引
44
次
|
|
|
|
14.
Kinlen P J. Corrosion protection using polyanujne coating formulations.
Synthetic Metals,1997,85(1/3):1327-1332
|
CSCD被引
26
次
|
|
|
|
15.
Tallman D E. Electroactive conducting polymers for corrosion control.
Journal of Solid State Electrochemistry,2002,6(2):85-100
|
CSCD被引
2
次
|
|
|
|
16.
Zhang Y. Enhancement of anticorrosion protection via inhibitor-loaded ZnAlCe-LDH nanocontainers embedded in sol-gel coatings.
Journal of Coatings Technology and Research,2018,15(2):303-313
|
CSCD被引
3
次
|
|
|
|
17.
Yan H. Ti_3C_2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating.
Progress in Organic Coatings,2019,135:156-167
|
CSCD被引
14
次
|
|
|
|
18.
Aghamohammadi H. Recent advances in developing the MXene/polymer nanocom-posites with multiple properties: a review study.
Synthetic Metals,2021,273:116695
|
CSCD被引
4
次
|
|
|
|
19.
Li X C. Enhanced lithium and electron diffusion of LiFePO_4 cathode with two-dimensional Ti_3C_2 MXene nanosheets.
Journal of Materials Science,2018,53:11078-11090
|
CSCD被引
6
次
|
|
|
|
20.
Kirkland N T. Exploring graphene as a corrosion protection barrier.
Corrosion Science,2012,56:1-4
|
CSCD被引
51
次
|
|
|
|
|