稀土硅酸盐环境障涂层研究进展
Research progress in rare earth silicate environmental barrier coatings
查看参考文献55篇
文摘
|
陶瓷基复合材料凭借耐高温、低密度、高温力学性能优异等特性,成为高性能航空发动机热端部件的理想材料。然而,在发动机服役环境下,陶瓷基复合材料面临严重的水汽腐蚀问题,必须在其表面涂覆环境障涂层以延长使用寿命。稀土硅酸盐因具有与基体适配的热膨胀系数、优异的抗水氧腐蚀性能和高温稳定性,是新一代环境障涂层的主要候选材料。本文综述了稀土硅酸盐的特性、制备技术与典型服役性能,重点讨论了稀土硅酸盐分类、热/物理特性以及高温腐蚀过程中的损伤机制和失效机理。最后,提出了多组元稀土硅酸盐高熵化设计以及新型热/环境障涂层体系设计的研究方向,以期为稀土硅酸盐材料的进一步应用提供有益参考。 |
其他语种文摘
|
Ceramic matrix composites are desirable materials for the hot end components of high performance generation aeroengines due to their high temperature resistance, low density and excellent high temperature mechanical properties. However, when exposed to combustion environment, the ceramic matrix composites are subjected to serious water vapor corrosion. Thus, environmental barrier coatings are indispensable to apply to their surfaces to extend their service life. The rare earth silicate has become the primary candidate material for the new generation of environmental barrier coating materials because of its suitable thermal expansion coefficient with the substrate, outstanding water vapor corrosion resistance and high temperature stability. The characteristics, preparation techniques and typical service performance of rare earth silicates were reviewed in this paper, with focus on their classification, thermal/physical properties, as well as the damage and failure mechanisms during high-temperature corrosion processes. Finally, the research directions of high entropy design of multi-component rare-earth silicates and the design of new thermal/environmental barrier coating systems were proposed. This paper aims to provide useful references for the further application of rare earth silicate materials. |
来源
|
材料工程
,2023,51(12):12-23 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000017
|
关键词
|
环境障涂层
;
稀土硅酸盐
;
水汽腐蚀
;
热/物理性能
;
制备工艺
|
地址
|
1.
中国航发北京航空材料研究院, 航空材料先进腐蚀与防护航空科技重点实验室, 北京, 100095
2.
中国航发北京航空材料研究院表面工程研究所, 北京, 100095
3.
中国航发北京航空材料研究院, 先进复合材料科技国家重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
航空发动机及燃气轮机基础科学中心基金项目
|
文献收藏号
|
CSCD:7633496
|
参考文献 共
55
共3页
|
1.
张立同. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨.
复合材料学报,2007,24(2):1-6
|
CSCD被引
124
次
|
|
|
|
2.
王鸣. 连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用.
航空制造技术,2014,57(6):10-13
|
CSCD被引
20
次
|
|
|
|
3.
Corman G S.
Comprehensive composite materialsⅡ,2017
|
CSCD被引
1
次
|
|
|
|
4.
刘巧沐. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战.
材料工程,2019,47(2):1-10
|
CSCD被引
57
次
|
|
|
|
5.
左平. 连续纤维增韧陶瓷基复合材料的发展及在航空发动机上的应用.
燃气涡轮试验与研究,2019,32(5):47-52
|
CSCD被引
11
次
|
|
|
|
6.
Narushima T. High-temperature oxidation of silicon carbide and silicon nitride.
Materials Transactions,JIM,1997,38(10):821-835
|
CSCD被引
8
次
|
|
|
|
7.
Smialek J L. SiC and Si_3N_4 recession due to SiO_2 scale volatility under combustor conditions.
Advanced Composite Materials,1999,8(1):33-45
|
CSCD被引
10
次
|
|
|
|
8.
Zhu D M. Creep,fatigue and fracture behavior of environmental barrier coating and SiC-SiC ceramic matrix composite systems:the role of environment effects.
International Conference on Ceramic Materials and Components for Energy and Environmental Applications,2015
|
CSCD被引
1
次
|
|
|
|
9.
Ueno S. Corrosion and recession of mullite in water vapor environment.
Journal of the European Ceramic Society,2008,28(2):431-435
|
CSCD被引
3
次
|
|
|
|
10.
Lee K N. Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si_3N_4 ceramics.
Surface and Coatings Technology,1996,86:142-148
|
CSCD被引
18
次
|
|
|
|
11.
Lee K N. Upper temperature limit of environmental barrier coatings based on mullite and BSAS.
Journal of the American Ceramic Society,2003,86(8):1299-1306
|
CSCD被引
31
次
|
|
|
|
12.
Tejero-Martin D. A review on environmental barrier coatings:history, current state of the art and future developments.
Journal of the European Ceramic Society,2021,41(3):1747-1768
|
CSCD被引
34
次
|
|
|
|
13.
钟鑫.
等离子喷涂硅酸镱涂层结构与性能研究,2018
|
CSCD被引
1
次
|
|
|
|
14.
罗颐秀.
稀土硅酸盐材料热学性能的理论研究及声子工程调控,2019
|
CSCD被引
3
次
|
|
|
|
15.
Wang J G. Preparation and X ray characterization of low temperature phases of R2SiO_5 (R= rare earth elements).
Materials Research Bulletin,2001,36(10):1855-1861
|
CSCD被引
7
次
|
|
|
|
16.
Felsche J.
The crystal chemistry of the rare earth silicates,1973:99-197
|
CSCD被引
1
次
|
|
|
|
17.
Xiang H M. Mechanical and thermal properties of Yb_2SiO_5:first-principles calculations and chemical bond theory investigations.
Journal of Materials Research,2014,29(15):1609-1619
|
CSCD被引
4
次
|
|
|
|
18.
Tian Z L. Theoretical and experimental determination of the major thermos-mechanical properties of RE_2SiO_5 (RE=Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications.
Journal of the European Ceramic Society,2016,36(1):189-202
|
CSCD被引
42
次
|
|
|
|
19.
Li Y R. Theoretical exploration of the abnormal trend in lattice thermal conductivity for monosilicates RE_2SiO_5(RE=Dy, Ho, Er, Tm, Yb and Lu).
Journal of the European Ceramic Society,2018,38(10):3539-3546
|
CSCD被引
9
次
|
|
|
|
20.
Tian Z L. Theoretical prediction and experimental determination of the low lattice thermal conductivity of Lu2SiO_5.
Journal of the European Ceramic Society,2015,35(6):1923-1932
|
CSCD被引
6
次
|
|
|
|
|