结构光照明光切片显微图像的高保真重构方法
High Fidelity Image Reconstruction of Optical Sectioning Structured Illumination Microscopy
查看参考文献26篇
文摘
|
光切片图像的质量与使用的重构算法直接相关,传统的均方根算法虽然简洁,但在原始图像信噪比和条纹对比度不高时重构效果不佳,得到的三维重建结果并不理想。针对该问题,提出一种去背景和去卷积相结合的光切片方法。与传统均方根算法相比,该方法能有效减少残留条纹,提高微小细节的可见性。实验搭建了一套基于数字微镜器件的结构照明显微系统,以小鼠肾脏细胞、牛肺动脉内皮细胞等为样品进行了光切片实验。实验结果表明,该方法能获得更好的光切片和三维成像效果。 |
其他语种文摘
|
In the research fields such as biomedicine and material science, researchers need to observe the Three-dimensional (3D) structure of samples. This promotes the development of 3D optical microscopic techniques, such as Laser Scanning Confocal Microscopy (LSCM), Light Sheet Fluorescence Microscopy (LSFM), Optical Sectioning Structured Illumination Microscopy (OS-SIM). Among them, OS-SIM has the capability of extracting the in-focus target information from the out-of-focus background of the sample to enable 3D optical imaging. The quality of the optical sectioning image is directly related to the reconstruction algorithm. Although the traditional RMS algorithm is simple, the reconstructed image is often poor when the signal-to-noise ratio and the fringe contrast of the original image are not high, and the 3D reconstructed image is not ideal. To overcome the deficiencies of the RMS algorithm, a number of methods have been proposed, such as the Fast and Adaptive Bi-Dimensional Empirical Mode Decomposition-Hilbert Spiral Transform (FABMED-HS) method, Sequence Hilbert Transform (SHT) method, Fourier-OS-SIM method. All these methods provide different ideas for realizing 3D microscopic imaging. In this paper, we propose a new method, which can obtain high fidelity optical sectioning images. This method combines background removal and deconvolution processing, and finally obtains the optical sectioning image using standard deviation operation. Compared to the traditional RMS algorithm, the proposed method can effectively reduce the residual fringes and improve the visibility of minute details. Even in the low contrast of structured illumination where the RMS algorithm works abnormally, the STD algorithm can still perform well. Because the reconstruction formula of this method is similar to the standard deviation formula, the proposed method is named “STD (Standard Deviation) algorithm”. Experimentally, a Digital Micro-mirror Device (DMD) based structured illumination microscope is built. In this microscope, a Laser Diode Illuminator(LDI) is used as light source that provides illumination of seven wavelength channels. The DMD has a resolution of 1 920×1 080 pixels, with a pixel size of 7.56 μm×7.56 μm. The SCOMS camera has a resolution of 2 048× 2 048 pixels, with a pixel size of 6.5 μm×6.5 μm. Firstly, we compare the reconstructed images of STD algorithm and RMS algorithm using mouse kidney cells and Bovine Pulmonary Artery Endothelial (BPAE) cells as samples. The experimental results demonstrate that RMS algorithm has better optical sectioning capability. The STD algorithm is also applied to previously collected data with a mite as the sample. The experimental results again suggest the robustness of the STD algorithm. And then, we find that changing the illumination wavelength has little effect on the imaging position, which makes it possible to optical sectioning at multiple wavelengths. We obtain dual-wavelength fluorescence images by using 470 nm and 555 nm to excite the mouse kidney cells samples. Finally, 3D imaging experiments is performed with pollen samples. The field-of-view of the image is 163.84 μm×163.84 μm. We took 125 layers of images, each thickness is 200 nm. Using the STD algorithm, we get sharp 3D images. All the above experimental results demonstrate that the STD method can obtain better optical sectioning 3D images compared to the RMS method. |
来源
|
光子学报
,2023,52(11):1110004 【核心库】
|
DOI
|
10.3788/gzxb20235211.1110004
|
关键词
|
结构光照明显微镜
;
光切片
;
三维显微成像
;
图像重构
;
标准差
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
国家重点研发计划
;
中国博士后科学基金
;
陕西省重点研发计划
;
西安光机所所级中心高端科学仪器国产化及核心部件开放基金
|
文献收藏号
|
CSCD:7630212
|
参考文献 共
26
共2页
|
1.
Breuninger T. Lateral modulation boosts image quality in single plane illumination fluorescence microscopy.
Optics Letters,2007,32(13):1938-1940
|
CSCD被引
3
次
|
|
|
|
2.
Planchon T A. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination.
Nature Methods,2011,8(5):417-423
|
CSCD被引
51
次
|
|
|
|
3.
Dan D A N. Structured illumination microscopy for super-resolution and optical sectioning.
Chinese Science Bulletin,2014,59(12):1291-1307
|
CSCD被引
16
次
|
|
|
|
4.
Helmchen F. Deep tissue two-photon microscopy.
Nature Methods,2005,2(12):932-940
|
CSCD被引
145
次
|
|
|
|
5.
Stachelek P. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions.
Nature Communications,2022,13(1):553
|
CSCD被引
6
次
|
|
|
|
6.
Krzic U. Multiview light-sheet microscope for rapid in toto imaging.
Nature Methods,2012,9(7):730-733
|
CSCD被引
15
次
|
|
|
|
7.
Vettenburg T. Light-sheet microscopy using an Airy beam.
Nature Methods,2014,11(5):541-544
|
CSCD被引
55
次
|
|
|
|
8.
Stelzer E H K. Light sheet fluorescence microscopy.
Nature Reviews Methods Primers,2021,1(1):73
|
CSCD被引
8
次
|
|
|
|
9.
Mertz J. Optical sectioning microscopy with planar or structured illumination.
Nature Methods,2011,8(10):811-819
|
CSCD被引
17
次
|
|
|
|
10.
Qian Jia. Full-color structured illumination optical sectioning microscopy.
Scientific Reports,2015,5(1):14513
|
CSCD被引
11
次
|
|
|
|
11.
Lin Ruizhe. Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics.
Nature Communications,2021,12(1):3148
|
CSCD被引
8
次
|
|
|
|
12.
Supekar O D. Miniature structured illumination microscope for in vivo 3D imaging of brain structures with optical sectioning.
Biomedical Optics Express,2022,13(4):2530-2541
|
CSCD被引
5
次
|
|
|
|
13.
Neil M A A. Method of obtaining optical sectioning by using structured light in a conventional microscope.
Optics Letters,1997,22(24):1905-1907
|
CSCD被引
42
次
|
|
|
|
14.
Dan D A N. DMD-based LED-illumination super-resolution and optical sectioning microscopy.
Scientific Reports,2013,3(1):1116
|
CSCD被引
56
次
|
|
|
|
15.
Patorski K. Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing.
Optics Express,2014,22(8):9517-9527
|
CSCD被引
7
次
|
|
|
|
16.
Zhou Xing. Double-exposure optical sectioning structured illumination microscopy based on Hilbert transform reconstruction.
PLoS One,2015,10(3):e0120892
|
CSCD被引
6
次
|
|
|
|
17.
Dang Shipei. Background noise suppression of optical sectioning structured illumination microscopy via Fourier domain reconstruction.
Frontiers in Physics,2022:368
|
CSCD被引
1
次
|
|
|
|
18.
Beeravolu A R. Preprocessing of breast cancer images to create datasets for deep-CNN.
IEEE Access,2021,9:33438-33463
|
CSCD被引
1
次
|
|
|
|
19.
Sternberg S R. Biomedical image processing.
Computer,1983,16(1):22-34
|
CSCD被引
9
次
|
|
|
|
20.
Becker K. Visualizing minute details in light-sheet and confocal microscopy data by combining 3D rolling ball filtering and deconvolution.
Journal of Biophotonics,2022,15(2):e202100290
|
CSCD被引
1
次
|
|
|
|
|