PIP工艺制备C/Zr_(0.5)Hf_(0.5)C-SiC复合材料及其微观结构和弯曲性能
Preparation of C/Zr_(0.5)Hf_(0.5)C-SiC composite by PIP process and its microstructure and flexural properties
查看参考文献17篇
文摘
|
基于自制Zr_(0.5)Hf_(0.5)C先驱体和商业化液态聚碳硅烷,通过先驱体浸渍裂解(PIP)工艺成功制备C/Zr_(0.5)Hf_(0.5)C-SiC复合材料,研究纤维表面热解C涂层厚度对复合材料微观结构及弯曲性能的影响。结果表明:自制Zr_(0.5)Hf_(0.5)C先驱体在1400℃下即可转化生成单一Zr_(0.5)Hf_(0.5)C固溶体。因具有良好的渗透性,转化生成的Zr_(0.5)Hf_(0.5)C基体同时存在于C/Zr_(0.5)Hf_(0.5)C-SiC复合材料的纤维束内和束间,呈包裹SiC基体的层状形貌。C/Zr_(0.5)Hf_(0.5)C-SiC复合材料主要由C,SiC和Zr_(0.5)Hf_(0.5)C相组成;具有不同热解C涂层厚度(0.67,0.84,1.36μm)的3组复合材料密度分别为2.07,1.99,1.98 g/cm~3;随热解C涂层厚度的增加复合材料中SiC含量减少。弯曲加载中3组不同热解C涂层厚度复合材料均呈现假塑性断裂模式,弯曲强度,弯曲模量和断裂韧度分别在410 MPa, 60 GPa和15.6 MPa·m~(1/2)以上。良好的界面结合和预先引入的SiC基体是C/Zr_(0.5)Hf_(0.5)C-SiC复合材料获得优良弯曲性能的关键。 |
其他语种文摘
|
Based on the self-made Zr_(0.5)Hf_(0.5)C precursor and commercial liquid polycarbosilane, C/Zr_(0.5)Hf_(0.5)C-SiC composite was successfully prepared by the precursor impregnation and pyrolysis (PIP) process. The influence of the thickness of pyrolytic C coating on the structure and bending properties of composite materials was studied. The results show that the self-made Zr_(0.5)Hf_(0.5)C precursor can be converted into Zr_(0.5)Hf_(0.5) C solid solution at a relatively low temperature of 1400℃. Because of its good permeability, the transformed Zr_(0.5)Hf_(0.5)C matrix exists in both the inter-bundle and intra-bundle regions of the C/Zr_(0.5)Hf_(0.5)C-SiC composite,which presents as a layered structure on SiC matrix. The phase composition of C/Zr_(0.5)Hf_(0.5) C-SiC composite mainly includes C,SiC and Zr_(0.5)Hf_(0.5) C. The densities of three groups of composites with different thicknesses of pyrolytic C coating (0.67,0.84, 1.36 µm) are 2.07,1.99,1.98 g/cm~3,respectively. SiC content in the composite decreases with the increase of the thickness of pyrolytic C coating. The three groups of composites with different thicknesses show pseudoplastic fracture mode during bending loading tests,bending strength, bending modulus and fracture toughness are above 410 MPa,60 GPa and 15.6 MPa·m~(1/2),respectively. Good interface bonding and pre-introduced SiC matrix are the keys to obtaining excellent bending properties of C/Zr_(0.5)Hf_(0.5)C-SiC composites. |
来源
|
材料工程
,2023,51(8):155-161 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000151
|
关键词
|
Zr_(0.5)Hf_(0.5)C
;
超高温陶瓷
;
先驱体浸渍裂解
;
微观结构
;
弯曲性能
|
地址
|
1.
国防科技大学空天科学学院, 长沙, 410073
2.
中国人民解放军96901部队31分队, 北京, 100094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7629460
|
参考文献 共
17
共1页
|
1.
陈伟华. 高温空气下C/SiC复合材料力学性能测试.
国防科技大学学报,2021,43(6):26-32
|
CSCD被引
2
次
|
|
|
|
2.
汪雷. C/SiC材料氧化烧蚀行为的理论模型与计算方法.
导弹与航天运载技术,2022,388(4):92-97
|
CSCD被引
2
次
|
|
|
|
3.
Hao J J. Changes in microstructure and mechanical properties of the carbon fiber and their effects on C/SiC composites.
Materials Characterization,2022,193:112334
|
CSCD被引
1
次
|
|
|
|
4.
Duan J J. Corrosion behavior of LSI-based 3Dneedled C/SiC composites subjected to burner rig test.
Corrosion Science,2022,197:109982-1-109982-8
|
CSCD被引
1
次
|
|
|
|
5.
Zhao R D. Fabrication of C/SiC composites by siliconizing carbon fiber reinforced nanoporous carbon matrix preforms and their properties.
Journal of the European Ceramic Society,2022,43(2):273-282
|
CSCD被引
4
次
|
|
|
|
6.
张立同. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨.
复合材料学报,2007,24(2):1-6
|
CSCD被引
124
次
|
|
|
|
7.
冯志海. 航天飞行器热防护系统低密度烧蚀防热材料研究进展.
材料工程,2020,48(8):14-24
|
CSCD被引
27
次
|
|
|
|
8.
齐方方. 超高温陶瓷基复合材料制备与性能的研究进展.
济南大学学报(自然科学版),2019,33(1):8-14
|
CSCD被引
5
次
|
|
|
|
9.
石林. 碳纤维増强超高温陶瓷基复合材料的研究进展.
炭素,2021(1):36-42
|
CSCD被引
2
次
|
|
|
|
10.
陈小武. 碳纤维增强超高温陶瓷基复合材料研究进展.
中国材料进展,2019,38(9):843-854
|
CSCD被引
7
次
|
|
|
|
11.
Binner J. Selection,processing, properties and applications of ultra-high temperature ceramic matrix composites,UHTCMCs-a review.
International Materials Reviews,2019,65(7):389-444
|
CSCD被引
31
次
|
|
|
|
12.
Yan C L. Ablation behavior and mechanism of C/ZrC,C/ZrC-SiC and C/SiC composites fabricated by polymer infiltration and pyrolysis process.
Corrosion Science,2014,86:131-141
|
CSCD被引
11
次
|
|
|
|
13.
Zhao X. Improved ablation resistance of C/SiC-ZrB2composites viapolymer precursor impregnation and pyrolysis.
Ceramics International,2017,43(15):12480-12489
|
CSCD被引
8
次
|
|
|
|
14.
Jiang Y L. Fabrication and optimization of 3D-Cf/HfC-SiC-based composites viasol-gel processing and reactive melt infiltration.
Journal of the European Ceramic Society,2021,41(3):1788-1794
|
CSCD被引
5
次
|
|
|
|
15.
Yan C L. Entirely aqueous solution-gel route for the preparation of zirconium carbide,hafnium carbide and their ternary carbide powders.
Ceramics-Silikaty,2016,60(3):248-253
|
CSCD被引
1
次
|
|
|
|
16.
刘伟. 界面涂层对液相硅浸渗制备C/SiC复合材料力学性能的影响.
材料导报,2012(增刊1):398-400
|
CSCD被引
1
次
|
|
|
|
17.
Liu R J. Influence of the SiC matrix introduction time on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC ultra-high temperature composites.
Ceramics International,2022,48(3):3762-3770
|
CSCD被引
1
次
|
|
|
|
|