帮助 关于我们

返回检索结果

PIP工艺制备C/Zr_(0.5)Hf_(0.5)C-SiC复合材料及其微观结构和弯曲性能
Preparation of C/Zr_(0.5)Hf_(0.5)C-SiC composite by PIP process and its microstructure and flexural properties

查看参考文献17篇

刘星煜 1   万帆 1 *   高世涛 2 *   王衍飞 1   李端 1   李俊生 1   刘荣军 1  
文摘 基于自制Zr_(0.5)Hf_(0.5)C先驱体和商业化液态聚碳硅烷,通过先驱体浸渍裂解(PIP)工艺成功制备C/Zr_(0.5)Hf_(0.5)C-SiC复合材料,研究纤维表面热解C涂层厚度对复合材料微观结构及弯曲性能的影响。结果表明:自制Zr_(0.5)Hf_(0.5)C先驱体在1400℃下即可转化生成单一Zr_(0.5)Hf_(0.5)C固溶体。因具有良好的渗透性,转化生成的Zr_(0.5)Hf_(0.5)C基体同时存在于C/Zr_(0.5)Hf_(0.5)C-SiC复合材料的纤维束内和束间,呈包裹SiC基体的层状形貌。C/Zr_(0.5)Hf_(0.5)C-SiC复合材料主要由C,SiC和Zr_(0.5)Hf_(0.5)C相组成;具有不同热解C涂层厚度(0.67,0.84,1.36μm)的3组复合材料密度分别为2.07,1.99,1.98 g/cm~3;随热解C涂层厚度的增加复合材料中SiC含量减少。弯曲加载中3组不同热解C涂层厚度复合材料均呈现假塑性断裂模式,弯曲强度,弯曲模量和断裂韧度分别在410 MPa, 60 GPa和15.6 MPa·m~(1/2)以上。良好的界面结合和预先引入的SiC基体是C/Zr_(0.5)Hf_(0.5)C-SiC复合材料获得优良弯曲性能的关键。
其他语种文摘 Based on the self-made Zr_(0.5)Hf_(0.5)C precursor and commercial liquid polycarbosilane, C/Zr_(0.5)Hf_(0.5)C-SiC composite was successfully prepared by the precursor impregnation and pyrolysis (PIP) process. The influence of the thickness of pyrolytic C coating on the structure and bending properties of composite materials was studied. The results show that the self-made Zr_(0.5)Hf_(0.5)C precursor can be converted into Zr_(0.5)Hf_(0.5) C solid solution at a relatively low temperature of 1400℃. Because of its good permeability, the transformed Zr_(0.5)Hf_(0.5)C matrix exists in both the inter-bundle and intra-bundle regions of the C/Zr_(0.5)Hf_(0.5)C-SiC composite,which presents as a layered structure on SiC matrix. The phase composition of C/Zr_(0.5)Hf_(0.5) C-SiC composite mainly includes C,SiC and Zr_(0.5)Hf_(0.5) C. The densities of three groups of composites with different thicknesses of pyrolytic C coating (0.67,0.84, 1.36 µm) are 2.07,1.99,1.98 g/cm~3,respectively. SiC content in the composite decreases with the increase of the thickness of pyrolytic C coating. The three groups of composites with different thicknesses show pseudoplastic fracture mode during bending loading tests,bending strength, bending modulus and fracture toughness are above 410 MPa,60 GPa and 15.6 MPa·m~(1/2),respectively. Good interface bonding and pre-introduced SiC matrix are the keys to obtaining excellent bending properties of C/Zr_(0.5)Hf_(0.5)C-SiC composites.
来源 材料工程 ,2023,51(8):155-161 【核心库】
DOI 10.11868/j.issn.1001-4381.2023.000151
关键词 Zr_(0.5)Hf_(0.5)C ; 超高温陶瓷 ; 先驱体浸渍裂解 ; 微观结构 ; 弯曲性能
地址

1. 国防科技大学空天科学学院, 长沙, 410073  

2. 中国人民解放军96901部队31分队, 北京, 100094

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 一般工业技术
文献收藏号 CSCD:7629460

参考文献 共 17 共1页

1.  陈伟华. 高温空气下C/SiC复合材料力学性能测试. 国防科技大学学报,2021,43(6):26-32 CSCD被引 2    
2.  汪雷. C/SiC材料氧化烧蚀行为的理论模型与计算方法. 导弹与航天运载技术,2022,388(4):92-97 CSCD被引 2    
3.  Hao J J. Changes in microstructure and mechanical properties of the carbon fiber and their effects on C/SiC composites. Materials Characterization,2022,193:112334 CSCD被引 1    
4.  Duan J J. Corrosion behavior of LSI-based 3Dneedled C/SiC composites subjected to burner rig test. Corrosion Science,2022,197:109982-1-109982-8 CSCD被引 1    
5.  Zhao R D. Fabrication of C/SiC composites by siliconizing carbon fiber reinforced nanoporous carbon matrix preforms and their properties. Journal of the European Ceramic Society,2022,43(2):273-282 CSCD被引 4    
6.  张立同. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨. 复合材料学报,2007,24(2):1-6 CSCD被引 124    
7.  冯志海. 航天飞行器热防护系统低密度烧蚀防热材料研究进展. 材料工程,2020,48(8):14-24 CSCD被引 27    
8.  齐方方. 超高温陶瓷基复合材料制备与性能的研究进展. 济南大学学报(自然科学版),2019,33(1):8-14 CSCD被引 5    
9.  石林. 碳纤维増强超高温陶瓷基复合材料的研究进展. 炭素,2021(1):36-42 CSCD被引 2    
10.  陈小武. 碳纤维增强超高温陶瓷基复合材料研究进展. 中国材料进展,2019,38(9):843-854 CSCD被引 7    
11.  Binner J. Selection,processing, properties and applications of ultra-high temperature ceramic matrix composites,UHTCMCs-a review. International Materials Reviews,2019,65(7):389-444 CSCD被引 31    
12.  Yan C L. Ablation behavior and mechanism of C/ZrC,C/ZrC-SiC and C/SiC composites fabricated by polymer infiltration and pyrolysis process. Corrosion Science,2014,86:131-141 CSCD被引 11    
13.  Zhao X. Improved ablation resistance of C/SiC-ZrB2composites viapolymer precursor impregnation and pyrolysis. Ceramics International,2017,43(15):12480-12489 CSCD被引 8    
14.  Jiang Y L. Fabrication and optimization of 3D-Cf/HfC-SiC-based composites viasol-gel processing and reactive melt infiltration. Journal of the European Ceramic Society,2021,41(3):1788-1794 CSCD被引 5    
15.  Yan C L. Entirely aqueous solution-gel route for the preparation of zirconium carbide,hafnium carbide and their ternary carbide powders. Ceramics-Silikaty,2016,60(3):248-253 CSCD被引 1    
16.  刘伟. 界面涂层对液相硅浸渗制备C/SiC复合材料力学性能的影响. 材料导报,2012(增刊1):398-400 CSCD被引 1    
17.  Liu R J. Influence of the SiC matrix introduction time on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC ultra-high temperature composites. Ceramics International,2022,48(3):3762-3770 CSCD被引 1    
引证文献 1

1 魏琰斌 不同预制体结构制备C/C-SiC复合材料的微观结构演变及力学性能 材料工程,2024,52(10):127-138
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号