聚合物离子凝胶基体体系、改性方法及应用研究进展
Research progress in polymer ionic gel matrix system,modification methods and applications
查看参考文献78篇
文摘
|
聚合物离子凝胶是一种由离子液体(IL)和聚合物基质构成的新型凝胶体系,具有优异的可拉伸性、较高的电导率和较好的稳定性,在柔性电子产品领域具有广阔的应用空间,备受国内外研究者关注。通过调研整理近年来相关领域的研究进展,本文综述了聚合物离子凝胶材料的基质分类,讨论了导电水凝胶的改性方法,阐述了离子凝胶在相关领域的应用,并在此基础上总结展望了聚合物离子凝胶面临的挑战与未来的发展方向。指出开发具有优异力学性能、高电导率、可降解的离子凝胶是未来研究的重点。同时,提高离子凝胶的环境稳定性,降低离子凝胶的制备成本是实际应用中亟须解决的难题。离子凝胶的制备与应用研究将促进柔性电子材料的飞速发展。 |
其他语种文摘
|
Polymer ionic gel is a new type of gel system composed of ionic liquid (IL) and polymer matrix, which has excellent extensibility, high conductivity and good stability. It has broad application space in the field of flexible electronic products, and has attracted the attention of researchers at home and abroad. Based on the investigation of the research progress in related fields in recent years, the matrix classification of polymer ionic gel materials was summarized, the modification methods of conductive hydrogels were discussed, the application of ionic gel in related fields was expounded, and on this basis, the challenges faced by polymer ionic gel and its future development direction were summarized and prospected. It was pointed out that the development of ionic gel with excellent mechanical properties,high conductivity and degradability is the focus of future research. At the same time, improving the environmental stability of ionic gel and reducing the preparation cost of ionic gel are urgent problems to be solved in practical applications. The preparation and application of ionic gel will promote the rapid development of flexible electronic materials. |
来源
|
材料工程
,2023,51(8):89-101 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000155
|
关键词
|
聚合物离子凝胶
;
柔性电子设备
;
可拉伸性
;
导电性
|
地址
|
国防科技大学空天科学学院, 长沙, 410073
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;化学工业 |
基金
|
湖南省青年科技人才项目
;
湖南省自然科学基金
|
文献收藏号
|
CSCD:7629453
|
参考文献 共
78
共4页
|
1.
Li T. Achieving better greenhouse effect than glass:visibly transparent and low emissivity metalpolymer hybrid metamaterials.
ES Energy & Environment,2019,5(13):102-107
|
CSCD被引
1
次
|
|
|
|
2.
Zhu M. Tactile and temperature sensors based on organic transistors:towards e-skin fabrication.
Frontiers of Physics,2021,16:1-13
|
CSCD被引
1
次
|
|
|
|
3.
Kwon J H. Porous ion gel:a versatile ionotronic sensory platform for high-performance,wearable ionoskins with electrical and optical dual output.
ACS Nano,2021,15(9):15132-15141
|
CSCD被引
9
次
|
|
|
|
4.
Afroz S. Synthesis and characterization of polyethylene oxide(PEO)-N,N-dimethylacrylamide(DMA)hydrogel by gamma radiation.
Advanced Composites and Hybrid Materials,2019,2:133-141
|
CSCD被引
3
次
|
|
|
|
5.
Wang W. pH-responsive Capsaicin@ chitosan nanocapsules for antibiofouling in marine applications.
Polymer,2018,158:223-230
|
CSCD被引
6
次
|
|
|
|
6.
Wu S. Tough,anti-freezing and conductive ionic hydrogels.
NPG Asia Materials,2022,14(1):65
|
CSCD被引
3
次
|
|
|
|
7.
Cai Y. Mixed-dimensional MXenehydrogel heterostructures for electronic skin sensors with ultrabroad working range.
Science Advances,2020,6(48):eabb5367
|
CSCD被引
21
次
|
|
|
|
8.
Cheng Y. Direct-ink-write 3Dprinting of hydrogels into biomimetic soft robots.
ACS Nano,2019,13(11):13176-13184
|
CSCD被引
9
次
|
|
|
|
9.
Hua M. Tough-hydrogel reinforced lowtortuosity conductive networks for stretchable and high-performance supercapacitors.
Advanced Materials,2021,33(26):2100983
|
CSCD被引
3
次
|
|
|
|
10.
Bae J. A 3Dnanostructured hydrogelframework-derived high-performance composite polymer lithiumion electrolyte.
Angewandte Chemie International Edition,2018,57(8):2096-2100
|
CSCD被引
63
次
|
|
|
|
11.
Zhang Y. Thermo-responsive and shape-adaptive hydrogel actuators from fundamentals to applications.
Engineered Science,2019,6:1-11
|
CSCD被引
1
次
|
|
|
|
12.
Ma R. Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing:in vitro and in vivo evaluation.
Composites Part B,2019,167:396-405
|
CSCD被引
5
次
|
|
|
|
13.
Yuan Y. Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets.
Angewandte Chemie International Edition,2020,59(3):1220-1227
|
CSCD被引
17
次
|
|
|
|
14.
Jiao C. 2-(3,4-Epoxy)ethyltriethoxysilane-modified waterborne acrylic resin:preparation and property analysis.
Polymer,2020,190:122196
|
CSCD被引
5
次
|
|
|
|
15.
Welton T. Room-temperature ionic liquids.solvents for synthesis and catalysis.
Chemical Reviews,1999,99(8):2071-2084
|
CSCD被引
737
次
|
|
|
|
16.
Ren Y. Electric-field-induced gradient ionogels for highly sensitive,broad-range-response,and freeze/heat-resistant ionic fingers.
Advanced Materials,2021,33(12):2008486
|
CSCD被引
9
次
|
|
|
|
17.
Cao Z. Transparent,mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids.
Materials Horizons,2020,7(3):912-918
|
CSCD被引
18
次
|
|
|
|
18.
Yu Z. Underwater communication and optical camouflage ionogels.
Advanced Materials,2021,33(24):2008479
|
CSCD被引
15
次
|
|
|
|
19.
Poh W C. Rapidly photocurable solid-state poly(ionic liquid)ionogels for thermally robust and flexible electrochromic devices.
Advanced Materials,2022,34(51):2206952
|
CSCD被引
5
次
|
|
|
|
20.
Le Bideau J. Ionogels,ionic liquid based hybrid materials.
Chemical Society Reviews,2011,40(2):907-925
|
CSCD被引
39
次
|
|
|
|
|