纤维增强碳化硅陶瓷基复合材料高导热性能研究进展
Research progress in high thermal conductivity of silicon carbide matrix composites reinforced with fibers
查看参考文献51篇
文摘
|
作为一种先进的高温结构及功能材料,高效传热和高温耐热相结合对纤维增强碳化硅陶瓷基复合材料(silicon carbide matrix composites, SiC CMC)在热管理领域(thermal management,TM)中的应用至关重要。常见的纤维增强碳化硅陶瓷基复合材料,如碳纤维增强碳化硅陶瓷基复合材料(Cf/SiC或Cf/C-SiC)、碳化硅纤维增强碳化硅陶瓷基复合材料(SiC_f/SiC)等,增强纤维的石墨化程度较低,难以形成有效的热输运网络。本文综述了纤维增强碳化硅陶瓷基复合材料制备及高导热性能等方面的最新研究进展。可通过引入高导热相、优化界面结构、粗粒化碳化硅晶体、设计预制体结构等方式提高纤维增强碳化硅陶瓷基复合材料的热输运能力。此外,展望了纤维增强碳化硅陶瓷基复合材料发展趋势,即综合考虑影响高导热碳化硅陶瓷基复合材料性能要素,灵活运用复合材料结构与性能的构效关系,以期制备尺寸稳定、性能优异的纤维增强碳化硅陶瓷基复合材料。 |
其他语种文摘
|
As one kind of advanced high temperature structural and functional materials, it is necessary for fiber reinforced silicon carbide matrix composites (SiC CMCs) in the field of thermal management (TM) to combine the efficient heat transfer and high temperature heat resistance. Common fibers reinforced SiC CMCs, such as carbon fibers reinforced SiC CMCs (Cf/SiC or Cf/C-SiC),silicon carbide based fiber reinforced SiC CMCs (SiC_f/SiC),etc.,have a low degree of graphitization of the reinforcing fiber and are difficult to form an effective heat transport network. The latest research progress on the preparation and properties of fiber reinforced SiC CMCs with highly thermal conductivity was reviewed in this paper. The heat transport ability of fiber reinforced SiC CMCs can be improved by introducing highly thermal conductive phase,optimizing interfacial structure,making silicon carbide crystal coarse-grained, and designing preform structure. Moreover, the development of the fiber reinforced SiC CMCs with highly thermal conductivities was prospected, that is, comprehensively considering the factors that affect the performance of SiC CMCs,flexibly using the structure-activity relationship between the microstructure and properties of the composites,in order to prepare fiber reinforced SiC CMCs with stable size, excellent properties. |
来源
|
材料工程
,2023,51(8):46-55 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000079
|
关键词
|
碳纤维
;
碳化硅
;
高导热
;
复合材料
|
地址
|
国防科技大学空天科学学院材料科学与工程系, 长沙, 410073
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7629449
|
参考文献 共
51
共3页
|
1.
Slack G A. Thermal conductivity of pure and impure silicon, silicon carbide,and diamond.
Journal of Applied Physics,1964,35(12):3460-3466
|
CSCD被引
17
次
|
|
|
|
2.
李辰冉. 国内外碳化硅陶瓷材料研究与应用进展.
硅酸盐通报,2020,39(5):1353-1370
|
CSCD被引
11
次
|
|
|
|
3.
Cheng Z. High thermal conductivity in wafer-scale cubic silicon carbide crystals.
Nature Communications,2022,13(1):7201-7209
|
CSCD被引
4
次
|
|
|
|
4.
Li S. Enhanced strength and toughness of silicon carbide ceramics by graphene platelet-derived laminated reinforcement.
Journal of Alloys and Compounds,2020,834:155252-155268
|
CSCD被引
1
次
|
|
|
|
5.
An Q L. Machining of SiC ceramic matrix composites: A review.
Chinese Journal of Aeronautics,2021,34(4):540-567
|
CSCD被引
41
次
|
|
|
|
6.
Wang X. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace:a focused review.
Journal of the European Ceramic Society,2021,41(9):4671-4688
|
CSCD被引
21
次
|
|
|
|
7.
Liu G. Recent advances in joining of SiC-based materials (monolithic SiC and SiC_f/SiC composites): Joining processes, joint strength, and interfacial behavior.
Journal of Advanced Ceramics,2019,8(1):19-38
|
CSCD被引
22
次
|
|
|
|
8.
Sun G. Microstructure and mechanical properties of SiCf/SiC composite prepared by chemical vapor infiltration.
Ceramics International,2022,48(24):36983-36991
|
CSCD被引
2
次
|
|
|
|
9.
Stalin M. Processing of Cf/SiC composites by hot pressing using polymer binders followed by polymer impregnation and pyrolysis.
Journal of the European Ceramic Society,2020,40(2):290-297
|
CSCD被引
5
次
|
|
|
|
10.
Zhao R. Construction of sandwichstructured C/C-SiC and C/C-SiC-ZrC composites with good mechanical and anti-ablation properties.
Journal of the European Ceramic Society,2022,42(4):1219-1226
|
CSCD被引
5
次
|
|
|
|
11.
Liu J. An overview of C-SiC microwave absorption composites serving in harsh environments.
Journal of the European Ceramic Society,2023,43(4):1237-1254
|
CSCD被引
5
次
|
|
|
|
12.
Okamura K. SiC-based ceramic fibers prepared via organic-to-inorganic conversion process-a review.
Journal of the Ceramic Society of Japan,2006,114(1330):445-454
|
CSCD被引
9
次
|
|
|
|
13.
张建可. 树脂基碳纤维复合材料的热物理性能之一-导热系数.
中国空间科学技术,1987(3):55-60
|
CSCD被引
8
次
|
|
|
|
14.
陈强. 热管理用高导热碳化硅陶瓷基复合材料研究进展.
无机材料学报,2023,38(6):634-646
|
CSCD被引
1
次
|
|
|
|
15.
Snead L L. Handbook of SiC properties for fuel performance modeling.
Journal of Nuclear Materials,2007,371(1):329-377
|
CSCD被引
67
次
|
|
|
|
16.
Che J. Thermal conductivity of carbon nanotubes.
Nanotechnology,2000,11:65-69
|
CSCD被引
47
次
|
|
|
|
17.
Ye C. Microstructure of high thermal conductivity mesophase pitch-based carbon fibers.
New Carbon Materials,2021,36(5):980-985
|
CSCD被引
5
次
|
|
|
|
18.
Balandin A A. Superior thermal conductivity of single-layer graphene.
Nano Letters,2008,8(3):902-907
|
CSCD被引
1080
次
|
|
|
|
19.
高晓晴. 高导热炭材料的研究进展.
功能材料,2006,37(2):173-177
|
CSCD被引
16
次
|
|
|
|
20.
Shindel.
High thermal conductivity materials,2006
|
CSCD被引
1
次
|
|
|
|
|