聚合物-陶瓷纳米复合材料在电介质储能应用中的研究进展
Research progress in polymer-ceramic nanocomposites for dielectric energy storage applications
查看参考文献75篇
文摘
|
电介质电容器因其极高的功率密度,近年来在工业生产、基础科研、航空航天、国防军工等领域发挥着越来越重要的作用。然而,电介质电容器较低的能量密度导致其体积普遍较大,难以满足未来器件的小型化需求。聚合物-陶瓷复合电介质材料可以将陶瓷材料的高介电常数与聚合物材料的高击穿场强联合起来,进而有望获得优异的储能特性。当前,发展具有高储能密度的聚合物-陶瓷复合电介质材料对于未来实现电介质电容器的小型化目标至关重要。本文主要从纳米填料调控、聚合物-陶瓷界面优化和多层复合结构设计三个角度出发,系统总结了目前聚合物-陶瓷复合电介质储能材料的研究进展,详细介绍了纳米填料的维度、尺寸、种类和多级结构,表面修饰改性和构筑核壳结构等界面优化方法以及三明治结构和梯度结构等多层复合结构设计对复合电介质材料的介电常数、击穿场强和储能密度的影响规律,分析探讨了复合电介质材料的微观结构与其储能特性之间的构效关系。最后,针对当前研究存在的挑战和不足,指出选用新型二维纳米填料、提升能量存储效率、采取多方式协同优化策略以及构筑相应的电容器件将是该领域未来的重点发展方向。 |
其他语种文摘
|
Owing to the feature of ultrahigh power density, the dielectric capacitors play an increasingly important role in the field of industrial production,basic scientific research,aerospace, and military industry in recent years. However, the relatively low energy storage density of the dielectric capacitors generally leads to their big sizes, which is difficult to meet the miniaturization requirements of future devices. Polymer-ceramic nanocomposites can combine high permittivity of the ceramic fillers and the excellent breakdown strength of the polymer matrix,thus achieving excellent energy storage performance. At present, developing the polymer-ceramic nanocomposites with high energy storage density is the key to realize the miniaturization goal of dielectric capacitors in the future. The current research progress of polymer-ceramic nanocomposites for energy storage capacitor applications from three perspectives was systematically summarized, including regulation of the nanofillers, optimization of the interfaces, and design of the multilayer composite structure. Notably, the influences of the dimension, size,species,hierarchical structure of the nanofillers, interface optimization methods such as surface modification and core-shell structure construction, as well as multilayer structure design such as sandwich structure and gradient structure on the permittivity, breakdown strength and the energy storage density of the nanocomposites were introduced in detail. Meanwhile, the structure-activity relationships between the microstructure of nanocomposites and their energy storage properties were further analyzed and discussed. Finally, based on the challenges and shortcomings of the current research, the important development directions of this field in the future were proposed, including selecting the new 2D nanofillers, enhancing the energy storage efficiency, employing multimode combined optimization strategy, and constructing the corresponding dielectric capacitors. |
来源
|
材料工程
,2023,51(8):12-22 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000085
|
关键词
|
纳米复合材料
;
电介质
;
能量存储
;
填料调控
;
界面优化
;
结构设计
|
地址
|
国防科技大学空天科学学院材料科学与工程系, 长沙, 410073
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国防科学技术大学基金
;
湖南省自然科学基金杰出青年基金
|
文献收藏号
|
CSCD:7629446
|
参考文献 共
75
共4页
|
1.
Wang G. Electroceramics for high-energy density capacitors:current status and future perspectives.
Chemical Reviews,2021,121(10):6124-6172
|
CSCD被引
65
次
|
|
|
|
2.
Palneedi H. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook.
Advanced Functional Materials,2018,28(42):1803665
|
CSCD被引
52
次
|
|
|
|
3.
Hao X. A review on the dielectric materials for high energy-storage application.
Journal of Advanced Dielectrics,2013,3(1):1330001
|
CSCD被引
34
次
|
|
|
|
4.
Yang L. Perovskite lead-free dielectrics for energy storage applications.
Progress in Materials Science,2019,102:72-108
|
CSCD被引
81
次
|
|
|
|
5.
Li W. Ceramic-polymer nanocomposites design for energy storage capacitor applications.
Advanced Materials Interfaces,2022,9(32):2201257
|
CSCD被引
1
次
|
|
|
|
6.
Guo M. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage:enhanced breakdown strength and improved discharge efficiency.
Materials Today,2019,29:49-67
|
CSCD被引
23
次
|
|
|
|
7.
Li D. Progress and perspectives in dielectric energy storage ceramics.
Journal of Advanced Ceramics,2021,10(4):675-703
|
CSCD被引
37
次
|
|
|
|
8.
Hu X. High energy density dielectrics based on PVDF-based polymers.
Energy Technology,2018,6(5):849-864
|
CSCD被引
6
次
|
|
|
|
9.
Hu J. Rational design of nanomaterials for high energy density dielectric capacitors via electrospinning.
Energy Storage Materials,2021,37:530-555
|
CSCD被引
8
次
|
|
|
|
10.
Wang J. Interface modification and energy storage properties of barium titanate-based/polyvinylidene fluoride composite.
Acta Physica Sinica,2020,69(21):217702
|
CSCD被引
1
次
|
|
|
|
11.
Li L. Significantly enhancing the dielectric constant and breakdown strength of linear dielectric polymers by utilizing ultralow loadings of nanofillers.
Journal of Materials Chemistry A,2021,9(40):23028-23036
|
CSCD被引
7
次
|
|
|
|
12.
Lu X. High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix.
Nano Energy,2020,70:104551
|
CSCD被引
3
次
|
|
|
|
13.
Zhu N. Interface-tailored relaxor ferroelectric nanocomposites with ultrahigh-insulation shell of fluorinated aromatic polythiourea for high-capacitance energy storage applications.
Advanced Electronic Materials,2022,8(12):2200670
|
CSCD被引
2
次
|
|
|
|
14.
Ji W. Nickel hydroxide as novel filler for high energy density dielectric polymer composites.
Composites Science and Technology,2019,172:117-124
|
CSCD被引
4
次
|
|
|
|
15.
Wen F. Preparation and energy storage performance of transparent dielectric films with two-dimensional platelets.
Composites Science and Technology,2019,182:107759
|
CSCD被引
2
次
|
|
|
|
16.
Fu J. Comparative study of dielectric properties of the PVDF composites filled with spherical and rodlike BaTiO_3derived by molten salt synthesis method.
Journal of Materials Science,2018,53(10):7233-7248
|
CSCD被引
2
次
|
|
|
|
17.
Zhang Y. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction.
Nano Energy,2019,56:138-150
|
CSCD被引
31
次
|
|
|
|
18.
Zhang H. Polymer matrix nanocomposites with 1Dceramic nanofillers for energy storage capacitor applications.
ACS Applied Materials &Interfaces,2020,12(1):1-37
|
CSCD被引
6
次
|
|
|
|
19.
Xie B. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO_3nanowires.
Journal of Materials Chemistry A,2017,5(13):6070-6078
|
CSCD被引
14
次
|
|
|
|
20.
Wang M. Effect of BaTiO_3nanowires on dielectric properties and energy storage density of polyimide composite films.
Ceramics International,2015,41(10):13582-13588
|
CSCD被引
6
次
|
|
|
|
|