青枯菌效应蛋白RipAF1对植物PTI的诱导作用
The role of Ralstonia solanacearum type III effector RipAF1 in the induction of host PTI response
查看参考文献37篇
文摘
|
青枯雷尔氏菌(Ralstonia solanacearum)利用III型分泌系统(Type three secretion system,T3SS)将自身合成的100多个效应蛋白注入寄主植物细胞引起免疫反应的变化。本文报道青枯菌GMI1000效应蛋白RipAF1对寄主植物先天免疫反应的诱导作用。在本氏烟草植物上瞬时表达RipAF1,显著地诱导了PTI标志基因NbAcre31、NbPti5和NbGras2的增强表达,伴随着胼胝质的累积。酵母双杂交实验从烟草cDNA文库中筛选到与RipAF1互作的NbBAK1的C端序列,随后的荧光素酶和双分子荧光互补实验表明RipAF1与BAK1在植物体内相互作用。在GMI1000菌株中将ripAF1缺失突变,在营养丰富和基本培养基中生长与野生型没有明显区别,灌根接种番茄后致病力增强,在番茄植物体内的繁殖速度变快。这些结果表明RipAF1是一个诱导寄主植物PTI反应的效应蛋白,并且负向影响青枯菌的致病力。 |
其他语种文摘
|
Ralstonia solanacearum injects a repertoire of effectors into host cells to modulate plant immune response via a type III secretion system.Our work reports the role of type III effector RipAF1 from GMI1000 in the induction of host immune response.Transient overexpression of RipAF1 in Nicotiana benthamiana resulted in the enhanced expression levels of PTI marker genes NbAcre31,NbPti5 and NbGras2.Simultaneously,a large amount of callose was accumulated.In a yeast two-hybrid experiment,a RipAF1-interacting C-terminal of BAK1 was screened from a cDNA library of N.benthamiana.Subsequent split-luciferase and bimolecular fluorescence complementation experiments showed that RipAF1 was interacted with NbBAK1 in vivo.A deletion mutant ΔripAF1 was constructed in GMI1000,which showed no difference from wild type in growth in both nutrient rich and minimal media.However,the mutant showed increased virulence on tomato plants,as well as the replication in planta.These results demonstrated that RipAF1 is an effector able to induce plant PTI and exerts a negative role for virulence. |
来源
|
植物病理学报
,2023,53(5):852-862 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000844
|
关键词
|
青枯菌
;
III型分泌系统
;
PTI
;
RipAF1
;
致病力
|
地址
|
福建农林大学植物保护学院, 福州, 350002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7616491
|
参考文献 共
37
共2页
|
1.
Gillings M R. Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex.
Bacterial Wilt: The Disease and Its Causative Agent, Pseudomonas solanacearum,1994:95-112
|
CSCD被引
3
次
|
|
|
|
2.
Remenant B. Ralstonia syzygii, the blood disease bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles.
PLoS ONE,2011,6(9):e24356
|
CSCD被引
7
次
|
|
|
|
3.
Hvvayward A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum.
Annual Review of Phytopathology,1991,29:65-87
|
CSCD被引
171
次
|
|
|
|
4.
Jiang G F. Bacterial wilt in China: history, current status, and future perspectives.
Frontiers in Plant Science,2017,8:1549
|
CSCD被引
65
次
|
|
|
|
5.
Peeters N. Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex.
BMC Genomics,2013,14(1):859
|
CSCD被引
14
次
|
|
|
|
6.
Deslandes L. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms.
Current Opinion in Plant Biology,2014,20:110-117
|
CSCD被引
6
次
|
|
|
|
7.
Landry D. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions.
Molecular Plant Pathology,2020,21(10):1377-1388
|
CSCD被引
14
次
|
|
|
|
8.
Chen K. Complete genome sequence analysis of the peanut pathogen Ralstonia solanacearum strain Rs-P. 362200.
BMC Microbiology,2021,21(1):118
|
CSCD被引
1
次
|
|
|
|
9.
Li X S. Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05.
Genes Genomics,2018,40(6):657-668
|
CSCD被引
5
次
|
|
|
|
10.
Lavie M. PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum.
Molecular Plant-Microbe Interactions,2002,15(10):1058-1068
|
CSCD被引
14
次
|
|
|
|
11.
Robertson A E. Relationship between avirulence gene (avrA) diversity in Ralstonia solanacearum and bacterial wilt incidence.
Molecular Plant-Microbe Interactions,2004,17(12):1376-1384
|
CSCD被引
12
次
|
|
|
|
12.
Poueymiro M. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco.
Molecular Plant-Microbe Interactions,2009,22(5):538-550
|
CSCD被引
19
次
|
|
|
|
13.
Bernoux M. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector.
Plant Cell,2008,20(8):2252-2264
|
CSCD被引
20
次
|
|
|
|
14.
Deslandes L. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus.
Proceedings of the National Academy of Science of USA,2003,100(13):8024-8029
|
CSCD被引
52
次
|
|
|
|
15.
Ausubel F M. Are innate immune signaling pathways in plants and animals conserved?.
Nature Immunology,2005,6:973-979
|
CSCD被引
56
次
|
|
|
|
16.
Boller T. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors.
Annual Review of Plant Biology,2009,60:379-406
|
CSCD被引
168
次
|
|
|
|
17.
Macho A P. Plant PRRs and the activation of innate immune signaling.
Molecular Cell,2014,54(2):263-272
|
CSCD被引
53
次
|
|
|
|
18.
Schwessinger B. Plant innate immunity: perception of conserved microbial signatures.
Annual Review of Plant Biology,2012,63:451-482
|
CSCD被引
20
次
|
|
|
|
19.
Nakano M. Comprehensive identification of PTI suppressors in type III effector repertoire reveals that Ralstonia solanacearum activates jasmonate signaling at two different steps.
International Journal of Molecular Science,2019,20:5992
|
CSCD被引
4
次
|
|
|
|
20.
Mukaihara T. Ralstonia solanacearum type III effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity.
mBio,2016,7:e00359-00316
|
CSCD被引
4
次
|
|
|
|
|