帮助 关于我们

返回检索结果

青枯菌效应蛋白RipAF1对植物PTI的诱导作用
The role of Ralstonia solanacearum type III effector RipAF1 in the induction of host PTI response

查看参考文献37篇

吴薇   邹华松 *  
文摘 青枯雷尔氏菌(Ralstonia solanacearum)利用III型分泌系统(Type three secretion system,T3SS)将自身合成的100多个效应蛋白注入寄主植物细胞引起免疫反应的变化。本文报道青枯菌GMI1000效应蛋白RipAF1对寄主植物先天免疫反应的诱导作用。在本氏烟草植物上瞬时表达RipAF1,显著地诱导了PTI标志基因NbAcre31、NbPti5和NbGras2的增强表达,伴随着胼胝质的累积。酵母双杂交实验从烟草cDNA文库中筛选到与RipAF1互作的NbBAK1的C端序列,随后的荧光素酶和双分子荧光互补实验表明RipAF1与BAK1在植物体内相互作用。在GMI1000菌株中将ripAF1缺失突变,在营养丰富和基本培养基中生长与野生型没有明显区别,灌根接种番茄后致病力增强,在番茄植物体内的繁殖速度变快。这些结果表明RipAF1是一个诱导寄主植物PTI反应的效应蛋白,并且负向影响青枯菌的致病力。
其他语种文摘 Ralstonia solanacearum injects a repertoire of effectors into host cells to modulate plant immune response via a type III secretion system.Our work reports the role of type III effector RipAF1 from GMI1000 in the induction of host immune response.Transient overexpression of RipAF1 in Nicotiana benthamiana resulted in the enhanced expression levels of PTI marker genes NbAcre31,NbPti5 and NbGras2.Simultaneously,a large amount of callose was accumulated.In a yeast two-hybrid experiment,a RipAF1-interacting C-terminal of BAK1 was screened from a cDNA library of N.benthamiana.Subsequent split-luciferase and bimolecular fluorescence complementation experiments showed that RipAF1 was interacted with NbBAK1 in vivo.A deletion mutant ΔripAF1 was constructed in GMI1000,which showed no difference from wild type in growth in both nutrient rich and minimal media.However,the mutant showed increased virulence on tomato plants,as well as the replication in planta.These results demonstrated that RipAF1 is an effector able to induce plant PTI and exerts a negative role for virulence.
来源 植物病理学报 ,2023,53(5):852-862 【核心库】
DOI 10.13926/j.cnki.apps.000844
关键词 青枯菌 ; III型分泌系统 ; PTI ; RipAF1 ; 致病力
地址

福建农林大学植物保护学院, 福州, 350002

语种 中文
文献类型 研究性论文
ISSN 0412-0914
学科 植物保护
基金 国家自然科学基金
文献收藏号 CSCD:7616491

参考文献 共 37 共2页

1.  Gillings M R. Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex. Bacterial Wilt: The Disease and Its Causative Agent, Pseudomonas solanacearum,1994:95-112 CSCD被引 3    
2.  Remenant B. Ralstonia syzygii, the blood disease bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS ONE,2011,6(9):e24356 CSCD被引 7    
3.  Hvvayward A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology,1991,29:65-87 CSCD被引 171    
4.  Jiang G F. Bacterial wilt in China: history, current status, and future perspectives. Frontiers in Plant Science,2017,8:1549 CSCD被引 65    
5.  Peeters N. Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics,2013,14(1):859 CSCD被引 14    
6.  Deslandes L. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Current Opinion in Plant Biology,2014,20:110-117 CSCD被引 6    
7.  Landry D. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Molecular Plant Pathology,2020,21(10):1377-1388 CSCD被引 14    
8.  Chen K. Complete genome sequence analysis of the peanut pathogen Ralstonia solanacearum strain Rs-P. 362200. BMC Microbiology,2021,21(1):118 CSCD被引 1    
9.  Li X S. Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05. Genes Genomics,2018,40(6):657-668 CSCD被引 5    
10.  Lavie M. PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum. Molecular Plant-Microbe Interactions,2002,15(10):1058-1068 CSCD被引 14    
11.  Robertson A E. Relationship between avirulence gene (avrA) diversity in Ralstonia solanacearum and bacterial wilt incidence. Molecular Plant-Microbe Interactions,2004,17(12):1376-1384 CSCD被引 12    
12.  Poueymiro M. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Molecular Plant-Microbe Interactions,2009,22(5):538-550 CSCD被引 19    
13.  Bernoux M. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell,2008,20(8):2252-2264 CSCD被引 20    
14.  Deslandes L. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Science of USA,2003,100(13):8024-8029 CSCD被引 52    
15.  Ausubel F M. Are innate immune signaling pathways in plants and animals conserved?. Nature Immunology,2005,6:973-979 CSCD被引 56    
16.  Boller T. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology,2009,60:379-406 CSCD被引 168    
17.  Macho A P. Plant PRRs and the activation of innate immune signaling. Molecular Cell,2014,54(2):263-272 CSCD被引 53    
18.  Schwessinger B. Plant innate immunity: perception of conserved microbial signatures. Annual Review of Plant Biology,2012,63:451-482 CSCD被引 20    
19.  Nakano M. Comprehensive identification of PTI suppressors in type III effector repertoire reveals that Ralstonia solanacearum activates jasmonate signaling at two different steps. International Journal of Molecular Science,2019,20:5992 CSCD被引 4    
20.  Mukaihara T. Ralstonia solanacearum type III effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. mBio,2016,7:e00359-00316 CSCD被引 4    
引证文献 1

1 张新宇 番茄抗叶霉病基因Cf-12的亚细胞定位和互作蛋白的筛选 东北农业大学学报,2025,56(1):42-49
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号