水稻小种特异性抗稻瘟病基因的等位性变异研究进展
Allelic variation in the race-specific blast resistance genes in rice
查看参考文献93篇
文摘
|
稻瘟病是制约水稻安全生产的主要病害之一,稻瘟病抗性基因的发掘与利用一直是理论研究和育种应用的热点。从1999年克隆Pib开始,已经从17个位点克隆了50多个小种特异性抗稻瘟病基因,不均匀地分布在水稻染色体上。绝大多数抗稻瘟病基因编码NLR(nucleotide-binding and leucine-rich repeat)结构域蛋白,单独或成对介导抗性。在抗稻瘟病基因位点中,存在丰富的等位性变异,这些变异常常发生在识别效应因子的关键结构域中,从而识别同源或序列无相似性的效应因子,使变异的基因具备新的小种特异性抗性。本文综述了水稻小种特异性抗稻瘟病基因的研究进展,讨论了等位性变异在抗稻瘟病基因的应用中的潜力。 |
其他语种文摘
|
Rice blast is one of destruction disease in rice and threaten the rice production and food security in China.Therefore,it is always the hotspot for exploring and utilizing rice blast resistance genes in study and breeding.Since the first resistance gene Pib was reported in 1999,it has been identified more than 50 race-specific resistance genes against Magnaporthe oryzae.These genes were cloned from 17 loci in eight of the twelve chromosomes of rice unevenly.Most of them encode nucleotide-binding and leucine-rich repeat proteins,which mediate the rice blast disease resistance as monogenic or paired genes.Among the 50 resistance genes,most of them are allelic or paralog genes of ones in 17 loci.Natural variations mainly occur in the domains that function to recognize effector,and confer the capability of resistance protein to recognize new effectors,generating new race-specific resistance in rice.We reviewed the progress in the study of rice blast resistance genes and discussed the potential application of their allelic variations in rice breeding. |
来源
|
植物病理学报
,2023,53(5):753-768 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000866
|
关键词
|
水稻
;
稻瘟病
;
抗病基因
;
等位变异
|
地址
|
四川农业大学, 西南作物基因资源发掘与利用国家重点实验室, 成都, 611130
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家自然科学基金联合基金项目
;
国家自然科学基金青年科学基金项目
|
文献收藏号
|
CSCD:7616482
|
参考文献 共
93
共5页
|
1.
Duan G. Large-scale genome scanning within exonic regions revealed the contributions of selective sweep prone genes to host divergence and adaptation in Magnaporthe oryzae species complex.
Microorganisms,2021,9(3):562
|
CSCD被引
1
次
|
|
|
|
2.
Yuan M. Pattern-recognition receptors are required for NLR-mediated plant immunity.
Nature,2021,592(7852):105-109
|
CSCD被引
46
次
|
|
|
|
3.
Ngou B P M. Mutual potentiation of plant immunity by cell-surface and intracellular receptors.
Nature,2021,592(7852):110-115
|
CSCD被引
48
次
|
|
|
|
4.
Zhai K. NLRs guard metabolism to coordinate pattern-and effector-triggered immunity.
Nature,2022,601(7892):245-251
|
CSCD被引
13
次
|
|
|
|
5.
Yang C. Binding of the Magnaporthe oryzae chitinase MoChia1 by a rice tetratricopeptide repeat protein allows free chitin to trigger immune responses.
The Plant cell,2019,31(1):172-188
|
CSCD被引
24
次
|
|
|
|
6.
Wang C. OsCERK1-mediated chitin perception and immune signaling requires Receptor-like Cytoplasmic Kinase 185 to activate an MAPK cascade in rice.
Molecular plant,2017,10(4):619-633
|
CSCD被引
27
次
|
|
|
|
7.
Zhai K. RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice.
Molecular Cell,2019,74(5):996-1009e1007
|
CSCD被引
15
次
|
|
|
|
8.
Bryan G T. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta.
The Plant Cell,2000,12(11):2033-2045
|
CSCD被引
195
次
|
|
|
|
9.
Li W. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t.
Molecular Plant-Microbe Interactions: MPMI,2009,22(4):411-420
|
CSCD被引
59
次
|
|
|
|
10.
Ray S. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54.
Front Plant Sci,2016,7:1140
|
CSCD被引
16
次
|
|
|
|
11.
Ribot C. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery.
The Plant Journal,2013,74(1):1-12
|
CSCD被引
19
次
|
|
|
|
12.
Wu J. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice.
New Phytologist,2015,206(4):1463-1475
|
CSCD被引
40
次
|
|
|
|
13.
Wu W. Stepwise arms race between AvrPik and Pik alleles in the rice blast pathosystem.
Molecular Plant-Microbe Interactions: MPMI,2014,27(8):759-769
|
CSCD被引
6
次
|
|
|
|
14.
Yoshida K. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae.
Plant Cell,2009,21(5):1573-1591
|
CSCD被引
71
次
|
|
|
|
15.
Zhang S. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib.
Scientific Reports,2015,5:11642
|
CSCD被引
21
次
|
|
|
|
16.
Li J B. Natural variation of rice blast resistance gene Pi-d2.
Genetics and Molecular Research: GMR,2015,14(1):1235-1249
|
CSCD被引
1
次
|
|
|
|
17.
Chen J. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae.
J Genet Genomics,2011,38(5):209-216
|
CSCD被引
41
次
|
|
|
|
18.
Qu S. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice.
Genetics,2006,172(3):1901-1914
|
CSCD被引
109
次
|
|
|
|
19.
Das A. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.
Functional & Integrative Genomics,2012,12(2):215-228
|
CSCD被引
24
次
|
|
|
|
20.
Vo K T X. Pi5 and Pii paired NLRs are functionally exchangeable and confer similar disease resistance specificity.
Molecules and Cells,2019,42(9):637-645
|
CSCD被引
4
次
|
|
|
|
|