禾生指梗霉菌侵染对谷子幼穗分化及发育的影响
Impact of Sclerospora graminicola infection on spikelet differentiation and development of foxtail millet (Setaria italica L.)
查看参考文献30篇
文摘
|
谷子白发病是由病原卵菌禾生指梗霉(Sclerospora graminicola)引起的一种严重影响谷子生产的土传病害。在谷穗生长锥伸长期,禾生指梗霉侵染扩展至谷子穗部可导致谷穗分化发育受阻,形成畸形穗。为解析禾生指梗霉侵染影响谷子幼穗分化及发育的分子基础,本研究观测了受侵染谷穗在生长锥突起期(S1)至雌雄蕊分化期(S5)的形态变化,借助RNAseq分析谷子穗部响应禾生指梗霉侵染的差异表达基因及关键调控因素,并通过LC-MS/MS测定病穗中生长素的含量变化。研究结果表明,受侵染谷穗在生长锥突起期发育受阻,枝梗分化期无明显一级、二级指梗分化特征;共有336个基因在谷穗发育不同时期(S1~ S5)均差异表达,显著富集在激素介导的信号通路、激素水平调节、激素代谢过程、激素生物合成过程等GO通路,通过KEGG也富集到色氨酸代谢、类胡萝卜生物合成、玉米素生物合成等与激素生物合成相关的途径,其中在色氨酸代谢通路富集到328个基因;IAA生物合成通路与转运通路相关调控基因表达量上调,而在IAA信号转导通路相关基因表达量下降。在S4时期病穗中生长素含量显著高于对照组,IAA处理可促进菌丝的生长发育。研究结果表明:禾生指梗霉可能通过调控寄主体内生长素的合成促进病原菌向谷子生长点进一步侵染和扩展。 |
其他语种文摘
|
Downy mildew caused by the oomycete pathogen Sclerospora graminicola,is a soil-borne disease,which resulting in serious grain yield losses to foxtail millet production.Panicles are often infected by S.graminicola at the growth cone extension stage,and therefore the differentiation and development of spikelets are hindered with subsequently displaying deformation.Regarding the morphological changes in panicles through the growth cone protrusion stage (S1) to the pistil and stamen differentiation stage (S5) with challenging of the oomycete infection,the aim of the present study was to investigate the underlying molecular mechanisms with the transcription profiling of differentially expressed genes and key regulatory factors association with pathogen infection through RNA-seq,while changes in auxin contents of panicles were determined using LC-MS/MS.According to the results,panicle development was inhibited at the growth cone protrusion stage,and no obvious characteristics of primary and secondary branches were observed at the panicle branch differentiation stage.A total of 336 differentially expressed genes (DEGs) were simultaneously associated with the five developmental stages (S1 ~ S5) of panicles,which significantly enriched in the hormone-mediated signal pathway,hormone level regulation,hormone metabolism process,and hormone biosynthesis process with Gene Ontology (GO) analysis,while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the pathways mainly related to hormone biosynthesis,such as tryptophan metabolism,carotenoid biosynthesis,and zeatin biosynthesis.Among them,328 genes involved in tryptophan metabolism were enriched.In addition,genes involved in indole-3-acetic acid (IAA) biosynthesis and transport pathways were up-regulated;however,genes related to IAA signal transduction were down-regulated.The auxin contents of the panicles were significantly increased following the infection of S.graminicola at the S4 stage,and IAA treatment in vitro promoted S.graminicola mycelium development.In sum,S.graminicola could promote mycelium growth and further infection towards the apical meristem in host foxtail millet by influencing auxin synthesis. |
来源
|
植物病理学报
,2023,53(4):679-689 【核心库】
|
DOI
|
10.13926/j.cnki.apps.001005
|
关键词
|
谷子
;
禾生指梗霉菌
;
幼穗分化
;
转录组
;
生长素
|
地址
|
1.
山西农业大学植物保护学院, 太谷, 030801
2.
山西省杂粮种质创新与分子育种重点实验室, 山西省杂粮种质创新与分子育种重点实验室, 太原, 030031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家重点研发计划
;
山西省自然基金面上项目
|
文献收藏号
|
CSCD:7616468
|
参考文献 共
30
共2页
|
1.
Adotey R E. Water-deficit stress alters intra-panicle grain number in sorghum.
Crop Science,2021,61(4):2680-2695
|
CSCD被引
1
次
|
|
|
|
2.
Oldenburg E. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum.
Mycotoxin Research,2015,31(3):117-126
|
CSCD被引
1
次
|
|
|
|
3.
Zhang B Q. Transcriptome profiles of Sporisorium reilianum during the early infection of resistant and susceptible maize isogenic lines.
Journal of Fungi,2021,7(2):150
|
CSCD被引
1
次
|
|
|
|
4.
Zhao X R. Inhibition of the spread of endophytic Sporisorium reilianum renders maize resistance to head smut.
The Crop Journal,2015,3(2):87-95
|
CSCD被引
2
次
|
|
|
|
5.
Skibbe D S. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen.
Science,2010,328(5974):89-92
|
CSCD被引
6
次
|
|
|
|
6.
Reis E M. Anthesis,the infectious process and disease progress curves for fusarium head blight in wheat.
Summa Phytopathologica,2016,42:134-139
|
CSCD被引
1
次
|
|
|
|
7.
Sun W X. Ustilaginoidea virens: insights into an emerging rice pathogen.
Annual Review of Phytopathology,2020,58(1):363-385
|
CSCD被引
11
次
|
|
|
|
8.
Zhang S P. Floral transition in maize infected with Sporisorium reilianum disrupts compatibility with this biotrophic fungal pathogen.
Planta,2013,237(5):1251-1266
|
CSCD被引
1
次
|
|
|
|
9.
Gonzalez-Lamothe R. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development.
The Plant Cell,2012,24(2):762-777
|
CSCD被引
7
次
|
|
|
|
10.
Xu L. Putative role of IAA during the early response of Brassica napus L. to Plasmodiophora brassicae.
European Journal of Plant Pathology,2016,145(3):601-613
|
CSCD被引
2
次
|
|
|
|
11.
Aliferis K A. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens.
PLoS One,2014,9:e111930
|
CSCD被引
6
次
|
|
|
|
12.
Brauer E K. Transcriptional and hormonal profiling of Fusarium graminearum-infected wheat reveals an association between auxin and susceptibility.
Physiological and Molecular Plant Pathology,2019,107:33-39
|
CSCD被引
2
次
|
|
|
|
13.
Zhou J Y. Jujube witches' broom phytoplasma effectors SJP1 and SJP2 induce lateral bud outgrowth by repressing the ZjBRC1-controlled auxin efflux channel.
Plant,Cell & Environment,2021,44(10):3257-3272
|
CSCD被引
1
次
|
|
|
|
14.
Li R J. Transcriptome profiling analysis reveals co-regulation of hormone pathways in foxtail millet during Sclerospora graminicola infection.
International Journal of Molecular Sciences,2020,21(4):1226
|
CSCD被引
1
次
|
|
|
|
15.
Rio D C. Purification of RNA using TRIzol (TRI Reagent).
Cold Spring Harbor Protocols,2010(6)
|
CSCD被引
59
次
|
|
|
|
16.
Kim D. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
Nature Biotechnology,2019,37(8):907-915
|
CSCD被引
198
次
|
|
|
|
17.
Liao Y. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features.
Bioinformatics,2014,30(7):923-930
|
CSCD被引
270
次
|
|
|
|
18.
Love M I. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biology,2014,15:550
|
CSCD被引
992
次
|
|
|
|
19.
Livak K J. Analysis of relative gene expression data using real-time quantitative pcr and the 2-△△CT Method.
Methods,2001,25:402-408
|
CSCD被引
8851
次
|
|
|
|
20.
Simura J. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics.
Plant Physiology,2018,177(2):476-489
|
CSCD被引
16
次
|
|
|
|
|