希金斯炭疽菌自噬相关基因ChAtg26的功能分析
Functional analysis of autophagy related gene ChAtg26 in Colletotrichum higginsianum
查看参考文献28篇
文摘
|
希金斯炭疽菌(Colletotrichum higginsianum)是一种重要的植物病原真菌,可引起严重的十字花科蔬菜炭疽病,对蔬菜生产造成了很大的影响。为了探究希金斯炭疽菌自噬相关基因ChAtg26在致病过程中的作用,本研究以希金斯炭疽菌侵染拟南芥Col-0后的cDNA为模板,通过qRT-PCR技术测定了ChAtg26基因在侵染过程中的表达模式,并利用同源重组技术构建了ChAtg26基因的敲除与回补突变体,分析了敲除ChAtg26基因对希金斯炭疽菌生长发育与致病能力的影响。结果表明,ChAtg26基因在病菌侵染寄主后0~ 40 h中有较高的表达量,而敲除ChAtg26基因后,病菌在生长速率、孢子萌发、附着胞形成以及对氧化胁迫敏感性方面没有明显变化,但是会在菌落黑色素累积与对细胞壁胁迫的敏感性方面有所下降,同时其产孢量与致病力会明显降低,说明ChAtg26基因参与了希金斯炭疽菌的黑色素合成、细胞壁胁迫应答反应、产孢与致病过程,并在这些过程中起着重要作用。 |
其他语种文摘
|
Colletotrichum higginsianum is an important plant pathogenic fungus that can cause severe cruciferous vegetable anthracnose,which has a great impact on vegetable production.In order to explore the function of the autophagy-related gene ChAtg26 in the pathogenesis of C.higginsianum,the cDNA of Arabidopsis thaliana Col-0 infected by C.higginsianum was used as a template in this study,and the expression pattern of the gene ChAtg26 during the infection process was determined by qRT-PCR.To characterize the function of ChAtg26,the gene knockout and mutant complementation were performed through homologous recombination technology,and the effects of the gene deletion on the growth,development and pathogenicity of C.higginsianum was evaluated.The result of expression pattern showed that the gene ChAtg26 reached the maximum expression level after 40 h of infection.When the deletion of this gene,no significantly effects were observed on the mycelial growth rate,conidium germination,appressorium formation,and sensitivity to oxidative stress,but the mutant showed the reduction of melanin accumulation in the colony,the sensitivity to cell wall stress,and the significantly decreased sporulation and pathogenicity.Taken together,our results suggest that ChAtg26 in C.higginsianum was involved in the melanin synthesis,cell wall stress response,conidia production and pathogenesis. |
来源
|
植物病理学报
,2023,53(3):412-423 【核心库】
|
DOI
|
10.13926/j.cnki.apps.001002
|
关键词
|
希金斯炭疽菌
;
自噬相关基因ChAtg26
;
基因功能分析
;
致病力
|
地址
|
华南农业大学植物保护学院, 广东省微生物信号与作物病害防控重点实验室, 广州, 510642
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
广东省自然科学基金
;
国家重点研发计划专项
|
文献收藏号
|
CSCD:7616436
|
参考文献 共
28
共2页
|
1.
Dean R. The Top 10 fungal pathogens in molecular plant pathology.
Molecular Plant Pathology,2012,13(4):414-430
|
CSCD被引
179
次
|
|
|
|
2.
Dallery J F. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters.
BMC Genomics,2017,18:667
|
CSCD被引
3
次
|
|
|
|
3.
Narusaka Y. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum.
Mol Plant Microbe In,2004,17(7):749-762
|
CSCD被引
1
次
|
|
|
|
4.
Damm U. The Colletotrichum destructivum species complex-hemibiotrophic pathogens of forage and field crops.
Stud Mycol,2014,79:49-84
|
CSCD被引
14
次
|
|
|
|
5.
Zhang H. Disease resistance identification technology of cabbage anthracnose at seedling stage (in Chinese).
华南农业大学学报,1998,19(3):47-50
|
CSCD被引
1
次
|
|
|
|
6.
Zhang H. Identification of resistance to anthracnose in Chinese cabbage variety resources (in Chinese).
广东农业科学,2000,3:47-49
|
CSCD被引
1
次
|
|
|
|
7.
Lu B B. Research progress on cabbage anthracnose (in Chinese).
长江蔬菜,2009,24:1-5
|
CSCD被引
1
次
|
|
|
|
8.
Yan Y. Colletotrichum higginsianum as a model for understanding host-pathogen interactions: a review.
International Journal of Molecular Sciences,2018,19(7):2142
|
CSCD被引
1
次
|
|
|
|
9.
O'Connell R. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions.
Mol Plant Microbe In,2004,17(3):272-282
|
CSCD被引
8
次
|
|
|
|
10.
Wang Q H. Independent losses and duplications of autophagy-related genes in fungal tree of life.
Environ Microbiol,2019,21(1):226-243
|
CSCD被引
2
次
|
|
|
|
11.
Nazarko T Y. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducer.
Molecular Biology of the Cell,2007,18(1):106-118
|
CSCD被引
2
次
|
|
|
|
12.
Duan L T. Research Progress on Fungal Autophagy (in Chinese).
热带生物学报,2021,12(2):253-260
|
CSCD被引
1
次
|
|
|
|
13.
Li F Q. Autophagy: a multifaceted intracellular system for bulk and selective recycling.
Trends in Plant Science,2012,17(9):526-537
|
CSCD被引
4
次
|
|
|
|
14.
Dunn W A. Pexophagy-The selective autophagy of peroxisomes.
Autophagy,2005,1(2):75-83
|
CSCD被引
8
次
|
|
|
|
15.
Sibirny A A. Mechanisms of autophagy and pexophagy in yeasts.
Biochemistry-Moscow+,2011,76(12):1279-1290
|
CSCD被引
1
次
|
|
|
|
16.
Oku M. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain.
Embo J,2003,22(13):3231-3241
|
CSCD被引
5
次
|
|
|
|
17.
Farre J C. PpAtg30 tags peroxisomes for turnover by selective autophagy.
Dev Cell,2008,14(3):365-376
|
CSCD被引
10
次
|
|
|
|
18.
Yamashita S I. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy.
J Cell Biol,2006,173(5):709-717
|
CSCD被引
1
次
|
|
|
|
19.
Yamashita S I. Functions of PI4P and sterol glucoside are necessary for the synthesis of a nascent membrane structure during pexophagy.
Autophagy,2007,3(1):35-37
|
CSCD被引
1
次
|
|
|
|
20.
Asakura M. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare.
Plant Cell,2009,21(4):1291-1304
|
CSCD被引
14
次
|
|
|
|
|