智能超表面使能无人机高能效通信信道建模与传输机理分析
Channel Modeling and Characteristics Analysis for High Energy-Efficient RIS-Assisted UAV Communications
查看参考文献32篇
文摘
|
智能超表面(Reconfigurable Intelligent Surface,RIS)作为第六代(Sixth Generation,6G)移动通信中的潜在关键技术之一,具有低成本、低能耗和易于部署等特点.通过给电磁单元上的可调元件施加控制信号,可以实现对入射信号的幅度、相位、极化等调控,从而构造智能化的通信环境,为终端高能效无线通信提供了契机.本文首先基于无人机通信技术发展现状,阐明了将RIS技术引入无人机通信系统的必要性;然后,分析了RIS使能无人机高能效通信信道的传输机理,归纳了信道建模关键技术;最后针对RIS使能无人机高能效通信信道建模,总结和展望了未来的技术挑战与研究方向. |
其他语种文摘
|
Reconfigurable intelligent surface (RIS) is one of the potential key technologies for sixth generation (6G) communications, which has the characteristics of low cost, low complexity, and easy deployment. By applying control signals to adjustable elements on the electromagnetic unit, it has the ability to adjusting the wireless communication environments, which provides a new opportunity to improve the high energy-efficiency performance of wireless communication systems. This paper provides a comprehensive overview of channel modeling and characteristics analysis for RIS-assisted unmanned aerial vehicle (UAV) high energy-efficiency communications. Firstly, based on the research basis of the UAV communications technologies, we clarify the necessities of introducing the RIS into UAV communications. Then, we summarize the key technologies for channel modeling and characteristics analysis for RIS-assisted UAV communications. Finally, we point out some future research directions in RIS-assisted UAV channel modeling and characteristics analysis. |
来源
|
电子学报
,2023,51(10):2623-2634 【核心库】
|
DOI
|
10.12263/DZXB.20221352
|
关键词
|
第六代移动通信
;
智能超表面技术
;
高能效通信
;
无人机通信
;
信道传输机理
|
地址
|
1.
东南大学, 移动通信国家重点实验室, 江苏, 南京, 210096
2.
东南大学, 教育部移动信息通信与安全前沿科学中心, 江苏, 南京, 210096
3.
网络通信与安全紫金山实验室, 江苏, 南京, 211111
4.
南京信息工程大学人工智能学院, 江苏, 南京, 210044
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
中央高校基本科研业务费专项资金
;
国家自然科学基金
;
江苏省自然科学基金
|
文献收藏号
|
CSCD:7607846
|
参考文献 共
32
共2页
|
1.
Zeng Y. Wireless communications with unmanned aerial vehicles: Opportunities and challenges.
IEEE Communications Magazine,2016,54(5):36-42
|
CSCD被引
163
次
|
|
|
|
2.
王承祥. 面向6G的无线通信信道特性分析与建模.
物联网学报,2020,4(1):19-32
|
CSCD被引
11
次
|
|
|
|
3.
Ozdogan O. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling.
IEEE Wireless Communications Letters,2020,9(5):581-585
|
CSCD被引
21
次
|
|
|
|
4.
崔铁军.
智能超表面技术研究报告. IMT-2030 (6G)推进组,2021
|
CSCD被引
1
次
|
|
|
|
5.
孙健. 5G高频段信道测量与建模进展.
电子学报,2017,45(5):1249-1260
|
CSCD被引
7
次
|
|
|
|
6.
Basar E. Reconfigurable intelligent surfaces for future wireless networks: A channel modeling perspective.
IEEE Wireless Communications,2021,28(3):108-114
|
CSCD被引
2
次
|
|
|
|
7.
Yildirim I. Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks.
IEEE Transactions on Communications,2021,69(2):1290-1301
|
CSCD被引
10
次
|
|
|
|
8.
Huang J. Reconfigurable intelligent surfaces: Channel characterization and modeling.
Proceedings of the IEEE,2022,110(9):1290-1311
|
CSCD被引
2
次
|
|
|
|
9.
Matolak D W. Unmanned aircraft systems: Air-ground channel characterization for future applications.
IEEE Vehicular Technology Magazine,2015,10(2):79-85
|
CSCD被引
11
次
|
|
|
|
10.
张洪铭. 海上无线通信技术:现状与挑战.
无线电通信技术,2021,47(4):392-401
|
CSCD被引
2
次
|
|
|
|
11.
Liu Y. A novel non-stationary 6G UAV channel model for maritime communications.
IEEE Journal on Selected Areas in Communications,2021,39(10):2992-3005
|
CSCD被引
7
次
|
|
|
|
12.
李忻. 动态MIMO散射无线信道模型及性能分析.
电子学报,2005,33(9):1660-1663
|
CSCD被引
2
次
|
|
|
|
13.
Jiang H. A novel 3D UAV channel model for A2G communication environments using AoD and AoA estimation algorithms.
IEEE Transactions on Communications,2020,68(11):7232-7246
|
CSCD被引
6
次
|
|
|
|
14.
Sun G Q. A 3D wideband channel model for RIS-assisted MIMO communications.
IEEE Transactions on Vehicular Technology,2022,71(8):8016-8029
|
CSCD被引
3
次
|
|
|
|
15.
Jiang H. A general wideband non-stationary stochastic channel model for intelligent reflecting surface-assisted MIMO communications.
IEEE Transactions on Wireless Communications,2021,20(8):5314-5328
|
CSCD被引
5
次
|
|
|
|
16.
张明. 一种通用宽带MIMO信道模型.
电子学报,2006,34(10):1758-1762
|
CSCD被引
4
次
|
|
|
|
17.
Jiang H. Channel modeling and characteristics for 6G wireless communications.
IEEE Network,2021,35(1):296-303
|
CSCD被引
3
次
|
|
|
|
18.
Wu Q Q. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming.
IEEE Transactions on Wireless Communications,2019,18(11):5394-5409
|
CSCD被引
143
次
|
|
|
|
19.
Xiong B P. A 3D nonstationary MIMO channel model for reconfigurable intelligent surface auxiliary UAV-to-ground mmWave communications.
IEEE Transactions on Wireless Communications,2022,21(7):5658-5672
|
CSCD被引
4
次
|
|
|
|
20.
Ndjiongue A R. Toward the use of re-configurable intelligent surfaces in VLC systems: Beam steering.
IEEE Wireless Communications,2021,28(3):156-162
|
CSCD被引
3
次
|
|
|
|
|