7A36铝合金挤压板材的TTT曲线与淬火析出行为
TTT diagrams and quenching precipitation behavior of 7A36 aluminum alloy extruded plate
查看参考文献33篇
文摘
|
采用分级淬火实验获得7A36铝合金挤压板材的时间-温度-转变(TTT)曲线,通过计算相图结合光学显微镜、扫描电镜、透射电镜、扫描透射电镜和高分辨透射电镜等分析手段研究淬火析出行为。结果表明:抑制合金相转变0.5%的临界淬火速率约为15.7 ℃/s,10%TTT曲线的鼻尖温度约为338 ℃,鼻尖处的转变时间约为22 s。在不同等温保温样品中观察到η(MgZn_2)相、T(Al_2Zn_3Mg_3)相、S(Al_2CuMg)相和富Cu-Zn的Y相等淬火析出相,并将其析出行为描述在TTT曲线中,绘制成时间-温度-析出相图。η平衡相依次在晶界、亚晶界和弥散粒子上形核长大,等温保温的温度越高,η相的尺寸越大。电导率随保温温度的升高先增大后减小;在420 ℃等温保温时,电导率升高是由于η相和T相的析出引起,在330 ℃和240 ℃等温保温时,电导率升高是由于η相、T相、S相和Y相析出的共同作用。 |
其他语种文摘
|
The time-temperature-transformation (TTT) diagrams of 7A36 aluminum alloy extruded plate were determined by an interrupted-quench method. The quenching precipitation behavior was investigated by calculate phase diagram(CALPHAD) combined with optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM),scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy(HRTEM). The results show that the critical quenching rate for inhibiting the phase transition of 7A36 aluminum alloy by 0.5% is about 15.7 ℃/s. Based on 10%TTT diagram, the nose temperature is determined to be about 338 ℃ with the transformation time of about 22 s. The precipitation of η(MgZn_2),T(Al_2Zn_3Mg_3),S(Al_2CuMg) or Cu-Zn rich Y phases can be found depending on different isothermal holding temperatures and time, and the precipitation behavior is described in the TTT curve, which is described as a time-temperatureprecipitation diagram. η equilibrium phase tends to occur at grain boundary(GB) first and then at sub-grain boundary(SGB) and on dispersoids in the interior of grains, at higher isothermal holding temperature, the size of η phase is larger. The electrical conductivity increases first and then decreases with the increase of holding temperature; isothermal holding at 420 ℃,the increase of electrical conductivity is caused by precipitation of η phase and T phase, while at 330 ℃ and 240 ℃,the increase of electrical conductivity is due to the precipitation of η phase, T phase, S phase and Y phase. |
来源
|
材料工程
,2023,51(11):134-143 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000803
|
关键词
|
7A36铝合金
;
时间-温度-转变曲线
;
淬火敏感性
;
淬火析出相
|
地址
|
1.
包头职业技术学院, 内蒙古, 包头, 014030
2.
中南大学材料科学与工程学院-包头职业技术学院产学研用创新中心, 内蒙古, 包头, 014030
3.
中南大学材料科学与工程学院, 长沙, 410083
4.
中南大学, 有色金属材料科学与工程教育部重点实验室, 长沙, 410083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
内蒙古高等学校科研项目
;
包头职业技术学院院立科学研究项目
;
国家重点研发计划资助项目
|
文献收藏号
|
CSCD:7604360
|
参考文献 共
33
共2页
|
1.
邓运来. 铝及铝合金材料进展.
中国有色金属学报,2019,29(9):2115-2141
|
CSCD被引
97
次
|
|
|
|
2.
Hirsch J. Recent development in aluminium for automotive applications.
Transactions of Nonferrous Metals Society of China,2014,24(7):1995-2002
|
CSCD被引
93
次
|
|
|
|
3.
陈军洲. AA 7055铝合金时效析出强化模型.
金属学报,2021,57(3):353-362
|
CSCD被引
14
次
|
|
|
|
4.
Lim S T. Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications.
Materials Science and Engineering:A,2004,371(1/2):82-90
|
CSCD被引
56
次
|
|
|
|
5.
Ma Z. Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA7136 alloy.
Materials Characterization,2020,168:110533
|
CSCD被引
8
次
|
|
|
|
6.
Liu S. Investigation of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by time-temperatureproperties diagrams.
Materials & Design,2010,31(6):3116-3120
|
CSCD被引
60
次
|
|
|
|
7.
Zhang Y. Investigation of the quenching sensitivity of forged 2A14 aluminum alloy by time-temperaturetensile properties diagrams.
Journal of Alloys and Compounds,2017,728:1239-1247
|
CSCD被引
6
次
|
|
|
|
8.
Dolan G P. Residual stress reduction in 7175-T73,6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis.
Journal of Materials Processing Technology,2004,153/154:346-351
|
CSCD被引
25
次
|
|
|
|
9.
Xie P. Study on quenching sensitivity of 7097 aluminum alloy.
Materials Research Express,2019,7(1):16505
|
CSCD被引
2
次
|
|
|
|
10.
张新明. 7050铝合金的TTP曲线.
中国有色金属学报,2009,19(5):861-868
|
CSCD被引
27
次
|
|
|
|
11.
Liu S D. TTP diagrams for 7055 aluminium alloy.
Materials Science and Technology,2013,24(12):1419-1421
|
CSCD被引
1
次
|
|
|
|
12.
Godard D. Precipitation sequences during quenching of the AA 7010 alloy.
Acta Materialia,2002,50(9):2319-2329
|
CSCD被引
63
次
|
|
|
|
13.
Starink M J. Predicting the quench sensitivity of Al-Zn-Mg-Cu alloys:a model for linear cooling and strengthening.
Materials & Design,2015,88:958-971
|
CSCD被引
8
次
|
|
|
|
14.
Liu S. Effect of step-quenching on microstructure of aluminum alloy 7055.
Transactions of Nonferrous Metals Society of China,2010,20(1):1-6
|
CSCD被引
26
次
|
|
|
|
15.
Tiryakioglu M. On the quench sensitivity of 7010 aluminum alloy forgings in the overaged condition.
Materials Science and Engineering:A,2014,618:22-28
|
CSCD被引
6
次
|
|
|
|
16.
Fan Y. Microstructure of as-extruded 7136 aluminum alloy and its evolution during solution treatment.
Rare Metals,2017,36(4):256-262
|
CSCD被引
5
次
|
|
|
|
17.
Tang J. Quench sensitivity of AA 7136 alloy:contribution of grain structure and dispersoids.
Metallurgical and Materials Transactions A,2019,50(10):4900-4912
|
CSCD被引
12
次
|
|
|
|
18.
Evancho J W. Kinetics of precipitation in aluminum alloys during continuous cooling.
Metall Trans,1974,5:43-47
|
CSCD被引
24
次
|
|
|
|
19.
马志民. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响.
金属学报,2021,58(9):1118-1128
|
CSCD被引
1
次
|
|
|
|
20.
Sun Y. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy.
Journal of Alloys and Compounds,2019,783:329-340
|
CSCD被引
17
次
|
|
|
|
|