帮助 关于我们

返回检索结果

固溶温度对2050铝锂合金挤压棒材组织和性能的影响
Effect of solid solution temperature on microstructure and properties of 2050 Al-Li alloy extruded bars

查看参考文献36篇

朱庆丰 1,2 *   王浩 2,3   高扬 2,3   林逸飞 2,3   左玉波 2,3  
文摘 在一定固溶时间下,固溶温度决定淬火后基体的过饱和度和再结晶程度,是影响材料时效后性能的重要因素。通过对2050铝锂合金挤压棒材进行不同温度(450~570 ℃)下保温2 h的固溶热处理和170 ℃/40 h的人工时效处理,结合多种性能检测和微观组织观察进行表征分析,研究固溶温度对2050铝锂合金挤压棒材组织和性能的影响。结果表明:随固溶温度逐渐升高,残余相不断回溶,固溶温度为525 ℃时残余相主要为含Fe相,升至550 ℃时棒材发生轻微过烧,达到570 ℃时棒材严重过烧;固溶温度为500 ℃时棒材发生局部再结晶,570 ℃时棒材完全再结晶。450~550 ℃固溶的2050铝锂合金挤压棒材经170 ℃/40 h的人工时效后,随固溶温度的升高θ'相和T1相数量增加,且强度呈先快速增加后缓慢线性增加的趋势,550 ℃固溶的棒材屈服强度和抗拉强度最高,分别为505 MPa和567 MPa;伸长率随着固溶温度的升高先快速下降后保持稳定,由固溶温度为450 ℃时的13.4 %降低至500~550 ℃时的10.7%~10.4%。
其他语种文摘 Under certain solid solution time conditions, the solid solution temperature determines the degree of supersaturation and recrystallisation of the matrix after quenching, and is an important factor in enhancing the performance of the material after aging treatment. Through the solid solution heat treatment of 2050 Al-Li alloy extruded bar at different temperatures for 2 h and artificial aging treatment at 170 ℃ for 40 h, combined with a variety of property testing methods and microstructure observation methods, the effect of solid solution temperature on the microstructure and properties of 2050 Al-Li alloy extruded bar was studied. The results show that the residual phase is continuously redissolved with the increase of the solid solution temperature, and the residual phase is mainly iron-containing phase when the solid solution temperature is 525 ℃. The slight overheating structure appears in the bar when the solid solution temperature is 550 ℃, and the serious overheating structure appears in the bar when the solid solution temperature reaches 570 ℃. Local recrystallization occurs when the bar is heated to 500 ℃, and complete recrystallization occurs when the solid solution temperature reaches 570 ℃. When the 2050 Al-Li alloy extruded bars are solution treated at different temperature (450-550 ℃) and aged at 170 ℃ for 40 h, the number of θ ' and T1 phases increases with the increase of solid solution temperature, and the strength increases rapidly and then slowly,when the solution treatment temperature is 550 °C, the yield strength and tensile strength of extruded rods are the highest, which are 505 MPa and 567 MPa, respectively; the elongation decreases rapidly at first and then remains stable with the increase of solid solution temperature, decreasing from 13.4% at 450 ℃ to 10.7%-10.4% at 500-550 ℃.
来源 材料工程 ,2023,51(11):71-78 【核心库】
DOI 10.11868/j.issn.1001-4381.2022.000704
关键词 2050铝锂合金 ; 固溶 ; 再结晶 ; 过烧 ; 力学性能 ; 析出相
地址

1. 材料先进制备技术教育部工程研究中心, 材料先进制备技术教育部工程研究中心, 沈阳, 110819  

2. 东北大学, 材料电磁过程研究教育部重点实验室, 沈阳, 110819  

3. 东北大学材料科学与工程学院, 沈阳, 110819

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 金属学与金属工艺
基金 中央高校基本科研业务费 ;  辽宁省自然科学基金 ;  镇江市重点研发计划
文献收藏号 CSCD:7604353

参考文献 共 36 共2页

1.  Peters M. Low density, high-stiffness, aluminumlithium materials. Journal of Aircraft,1990,27(5):456-458 CSCD被引 1    
2.  Williams J C. Progress in structural materials for aerospace systems. Acta Materialia,2003,51(19):5775-5799 CSCD被引 441    
3.  Bodily B. Advanced aluminum and aluminum-lithium solutions for derivative and next generation aerospace structures. SAE Technical Paper,2012 CSCD被引 1    
4.  Rioja R J. The evolution of Al-Li base products for aerospace and space applications. Metallurgical and Materials Transactions A,2012,43(9):3325-3337 CSCD被引 181    
5.  Kablov E N. Development and application prospects of aluminum-lithium alloys in aircraft and space technology. Metallurgist,2021,65(1/2):72-81 CSCD被引 8    
6.  Dursun T. Recent developments in advanced aircraft aluminium alloys. Materials & Design,2014,56:862-871 CSCD被引 351    
7.  Lequeu P. Aluminum-copperlithium alloy 2050 developed for medium to thick plate. Journal of Materials Engineering and Performance,2009,19(6):841-847 CSCD被引 36    
8.  Lequeu P. Advances in aerospace aluminum. Advanced Materials and Processes,2008,9(2):47-49 CSCD被引 15    
9.  Lequeu P. Aluminum alloy development for the airbus A380-Part 2. Advanced Materials & Processes,2007,165(7):41-44 CSCD被引 10    
10.  Warner T. Recently-developed aluminium solutions for aerospace applications. Materials Science Forum,2006,519/521:1271-1278 CSCD被引 105    
11.  Hafley R. Evaluation of aluminum alloy 2050-T84 microstructure and mechanical properties at ambient and cryogenic temperatures,2011 CSCD被引 1    
12.  Li M. Effect of thermal oxidation on surface chemistry and elemental segregation of Al-Cu-Li alloy. Applied Surface Science,2020,534:147633 CSCD被引 2    
13.  Antunes F V. Fatigue crack growth in the 2050-T8 aluminium alloy. International Journal of Fatigue,2018,115:79-88 CSCD被引 3    
14.  Wagner V. Relationship between cutting conditions and chips morphology during milling of aluminium Al-2050. The International Journal of Advanced Manufacturing Technology,2015,82:1881-1897 CSCD被引 1    
15.  Guerin M. Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al-Cu-Li alloy. Corrosion Science,2014,85(1):455-470 CSCD被引 7    
16.  Rouleau B. Characterization at a local scale of a laser-shock peened aluminum alloy surface. Applied Surface Science,2011,257(16):7195-7203 CSCD被引 2    
17.  Sidhar H. Impact of thermal management on post weld heat treatment efficacy in friction stir welded 2050-T3 alloy. Journal of Alloys and Compounds,2017,722:330-338 CSCD被引 3    
18.  Avettand M N. Heterogeneity of the nugget microstructure in a thick 2050 Al friction-stirred weld. Metallurgical and Materials Transactions A,2014,46(1):300-314 CSCD被引 3    
19.  Zhu R H. Flow curve correction and processing map of 2050 Al-Li alloy. Transactions of Nonferrous Metals Society of China,2018,28(3):404-414 CSCD被引 11    
20.  Zhu R H. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression. Journal of Alloys and Compounds,2015,650:75-85 CSCD被引 21    
引证文献 1

1 张保华 固溶温度对QBe1.9和QBe2铍铜合金组织与性能的影响 金属热处理,2025,50(3):96-102
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号