固溶温度对2050铝锂合金挤压棒材组织和性能的影响
Effect of solid solution temperature on microstructure and properties of 2050 Al-Li alloy extruded bars
查看参考文献36篇
文摘
|
在一定固溶时间下,固溶温度决定淬火后基体的过饱和度和再结晶程度,是影响材料时效后性能的重要因素。通过对2050铝锂合金挤压棒材进行不同温度(450~570 ℃)下保温2 h的固溶热处理和170 ℃/40 h的人工时效处理,结合多种性能检测和微观组织观察进行表征分析,研究固溶温度对2050铝锂合金挤压棒材组织和性能的影响。结果表明:随固溶温度逐渐升高,残余相不断回溶,固溶温度为525 ℃时残余相主要为含Fe相,升至550 ℃时棒材发生轻微过烧,达到570 ℃时棒材严重过烧;固溶温度为500 ℃时棒材发生局部再结晶,570 ℃时棒材完全再结晶。450~550 ℃固溶的2050铝锂合金挤压棒材经170 ℃/40 h的人工时效后,随固溶温度的升高θ'相和T1相数量增加,且强度呈先快速增加后缓慢线性增加的趋势,550 ℃固溶的棒材屈服强度和抗拉强度最高,分别为505 MPa和567 MPa;伸长率随着固溶温度的升高先快速下降后保持稳定,由固溶温度为450 ℃时的13.4 %降低至500~550 ℃时的10.7%~10.4%。 |
其他语种文摘
|
Under certain solid solution time conditions, the solid solution temperature determines the degree of supersaturation and recrystallisation of the matrix after quenching, and is an important factor in enhancing the performance of the material after aging treatment. Through the solid solution heat treatment of 2050 Al-Li alloy extruded bar at different temperatures for 2 h and artificial aging treatment at 170 ℃ for 40 h, combined with a variety of property testing methods and microstructure observation methods, the effect of solid solution temperature on the microstructure and properties of 2050 Al-Li alloy extruded bar was studied. The results show that the residual phase is continuously redissolved with the increase of the solid solution temperature, and the residual phase is mainly iron-containing phase when the solid solution temperature is 525 ℃. The slight overheating structure appears in the bar when the solid solution temperature is 550 ℃, and the serious overheating structure appears in the bar when the solid solution temperature reaches 570 ℃. Local recrystallization occurs when the bar is heated to 500 ℃, and complete recrystallization occurs when the solid solution temperature reaches 570 ℃. When the 2050 Al-Li alloy extruded bars are solution treated at different temperature (450-550 ℃) and aged at 170 ℃ for 40 h, the number of θ ' and T1 phases increases with the increase of solid solution temperature, and the strength increases rapidly and then slowly,when the solution treatment temperature is 550 °C, the yield strength and tensile strength of extruded rods are the highest, which are 505 MPa and 567 MPa, respectively; the elongation decreases rapidly at first and then remains stable with the increase of solid solution temperature, decreasing from 13.4% at 450 ℃ to 10.7%-10.4% at 500-550 ℃. |
来源
|
材料工程
,2023,51(11):71-78 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000704
|
关键词
|
2050铝锂合金
;
固溶
;
再结晶
;
过烧
;
力学性能
;
析出相
|
地址
|
1.
材料先进制备技术教育部工程研究中心, 材料先进制备技术教育部工程研究中心, 沈阳, 110819
2.
东北大学, 材料电磁过程研究教育部重点实验室, 沈阳, 110819
3.
东北大学材料科学与工程学院, 沈阳, 110819
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
中央高校基本科研业务费
;
辽宁省自然科学基金
;
镇江市重点研发计划
|
文献收藏号
|
CSCD:7604353
|
参考文献 共
36
共2页
|
1.
Peters M. Low density, high-stiffness, aluminumlithium materials.
Journal of Aircraft,1990,27(5):456-458
|
CSCD被引
1
次
|
|
|
|
2.
Williams J C. Progress in structural materials for aerospace systems.
Acta Materialia,2003,51(19):5775-5799
|
CSCD被引
441
次
|
|
|
|
3.
Bodily B.
Advanced aluminum and aluminum-lithium solutions for derivative and next generation aerospace structures. SAE Technical Paper,2012
|
CSCD被引
1
次
|
|
|
|
4.
Rioja R J. The evolution of Al-Li base products for aerospace and space applications.
Metallurgical and Materials Transactions A,2012,43(9):3325-3337
|
CSCD被引
181
次
|
|
|
|
5.
Kablov E N. Development and application prospects of aluminum-lithium alloys in aircraft and space technology.
Metallurgist,2021,65(1/2):72-81
|
CSCD被引
8
次
|
|
|
|
6.
Dursun T. Recent developments in advanced aircraft aluminium alloys.
Materials & Design,2014,56:862-871
|
CSCD被引
351
次
|
|
|
|
7.
Lequeu P. Aluminum-copperlithium alloy 2050 developed for medium to thick plate.
Journal of Materials Engineering and Performance,2009,19(6):841-847
|
CSCD被引
36
次
|
|
|
|
8.
Lequeu P. Advances in aerospace aluminum.
Advanced Materials and Processes,2008,9(2):47-49
|
CSCD被引
15
次
|
|
|
|
9.
Lequeu P. Aluminum alloy development for the airbus A380-Part 2.
Advanced Materials & Processes,2007,165(7):41-44
|
CSCD被引
10
次
|
|
|
|
10.
Warner T. Recently-developed aluminium solutions for aerospace applications.
Materials Science Forum,2006,519/521:1271-1278
|
CSCD被引
105
次
|
|
|
|
11.
Hafley R.
Evaluation of aluminum alloy 2050-T84 microstructure and mechanical properties at ambient and cryogenic temperatures,2011
|
CSCD被引
1
次
|
|
|
|
12.
Li M. Effect of thermal oxidation on surface chemistry and elemental segregation of Al-Cu-Li alloy.
Applied Surface Science,2020,534:147633
|
CSCD被引
2
次
|
|
|
|
13.
Antunes F V. Fatigue crack growth in the 2050-T8 aluminium alloy.
International Journal of Fatigue,2018,115:79-88
|
CSCD被引
3
次
|
|
|
|
14.
Wagner V. Relationship between cutting conditions and chips morphology during milling of aluminium Al-2050.
The International Journal of Advanced Manufacturing Technology,2015,82:1881-1897
|
CSCD被引
1
次
|
|
|
|
15.
Guerin M. Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al-Cu-Li alloy.
Corrosion Science,2014,85(1):455-470
|
CSCD被引
7
次
|
|
|
|
16.
Rouleau B. Characterization at a local scale of a laser-shock peened aluminum alloy surface.
Applied Surface Science,2011,257(16):7195-7203
|
CSCD被引
2
次
|
|
|
|
17.
Sidhar H. Impact of thermal management on post weld heat treatment efficacy in friction stir welded 2050-T3 alloy.
Journal of Alloys and Compounds,2017,722:330-338
|
CSCD被引
3
次
|
|
|
|
18.
Avettand M N. Heterogeneity of the nugget microstructure in a thick 2050 Al friction-stirred weld.
Metallurgical and Materials Transactions A,2014,46(1):300-314
|
CSCD被引
3
次
|
|
|
|
19.
Zhu R H. Flow curve correction and processing map of 2050 Al-Li alloy.
Transactions of Nonferrous Metals Society of China,2018,28(3):404-414
|
CSCD被引
11
次
|
|
|
|
20.
Zhu R H. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression.
Journal of Alloys and Compounds,2015,650:75-85
|
CSCD被引
21
次
|
|
|
|
|