气凝胶/纤维复合材料的热学和力学性能以及界面相容性的研究进展
Progress in thermal and mechanical properties and interfacial compatibility of aerogel/fiber composites
查看参考文献60篇
文摘
|
气凝胶/纤维复合材料因具有高孔隙率、低体积密度、高比表面积、低热导率等优点,在航空航天、国防军工、环境治理、生物医药等领域展现出广泛的应用前景。本文综述了气凝胶/纤维复合材料的热学和力学性能以及界面相容性,介绍了传热机制,力学性能增强机制以及界面相容性黏合机制,考虑到不同纤维的体积分数和纤维的多尺度即不同纤维直径(长径比)和纤维之间的孔隙直径,总结了不同纤维嵌入对复合材料最终性能的影响。最后,针对气凝胶/纤维复合材料的耐热性、改善力学性能以及材料界面结合等提出未来的研究方向。 |
其他语种文摘
|
Aerogel/fiber composites have shown a wide range of applications in aerospace, defence, environmental management and biomedicine due to their high porosity, low bulk density, high specific surface area and low thermal conductivity. The thermal and mechanical properties and interfacial compatibility of aerogel/fiber composites was reviewed, the heat transfer mechanism, mechanical property enhancement mechanism and interfacial compatibility bonding mechanism was introduced, and the effect of different fiber embedding on the final properties of the composites considering different fiber volume fractions and fiber multiscale i. e. different fiber diameters (aspect ratio) and pore diameters between fibers was summarized in this paper. Finally, the prospective future of the research directions of aerogel/fiber composites were proposed, including heat resistance, improved mechanical properties and material interface bonding. |
来源
|
材料工程
,2023,51(11):1-13 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000526
|
关键词
|
气凝胶/纤维
;
热学性能
;
力学性能
;
界面相容性
|
地址
|
上海工程技术大学航空运输学院, 上海, 201620
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
高性能纤维及制品教育部重点实验室
|
文献收藏号
|
CSCD:7604347
|
参考文献 共
60
共3页
|
1.
Husing N. Porous semiconducting gels.
Angewandte Chemie International Edition,1998,37:22-27
|
CSCD被引
97
次
|
|
|
|
2.
朱浩彤. 纤维气凝胶的分类、制备工艺及应用现状.
材料导报,2021,35(23):23057-23067
|
CSCD被引
3
次
|
|
|
|
3.
Nguyen S. Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites.
Composites Science and Technology,2019,182:107720
|
CSCD被引
2
次
|
|
|
|
4.
Vareda J P. Heavy metals in Iberian soils:removal by current adsorbents/amendments and prospective for aerogels.
Advances in Colloid and Interface Science,2016,237:28-42
|
CSCD被引
1
次
|
|
|
|
5.
Yun S. Low-density,hydrophobic,highly flexible ambient-pressuredried monolithic bridged silsesquioxane aerogels.
Journal of Materials Chemistry A,2014,3(7):3390-3398
|
CSCD被引
4
次
|
|
|
|
6.
Huang P I. Dual-mode carbon aerogel/iron rubber sensor.
ACS Applied Materials & Interfaces,2020,12(7):8674-8680
|
CSCD被引
1
次
|
|
|
|
7.
Feng S. Development of lightweight polypyrrole/cellulose aerogel composite with adjustable dielectric properties for co-ntrollable microwave absorption performance.
Cellulose,2020,27(17):10213-10224
|
CSCD被引
2
次
|
|
|
|
8.
Goldberg K A. Extreme ultraviolet (EUV) lithography IV-commissioning an EUV mask microscope for litho-graphy generations reaching 8 nm.
Proceedings of SPIE 2013 Advanced Lithography,2013:867919
|
CSCD被引
1
次
|
|
|
|
9.
Jalili V. The role of aerogel-based sorbents in microextraction techniques.
Microchemical Journal:Devoted to the Application of Microtechniques in all Branches of Science,2019,147:948-954
|
CSCD被引
2
次
|
|
|
|
10.
Thapliyal P C. Aerogels as promising thermal insulating materials:an overview.
Journal of Materials,2014,2014:127049
|
CSCD被引
9
次
|
|
|
|
11.
Yin H. Modeling thermal insulation of firefighting protective clothing embedded with phase change materia l.
Heat and Mass Transfer,2013,49(4):567-573
|
CSCD被引
9
次
|
|
|
|
12.
Fedyukhin A V. Aerogel product applications for high-temperature thermal insulation.
Energies,2022,15(20):7792
|
CSCD被引
1
次
|
|
|
|
13.
Mazrouei-Sebdani Z. A review on silica aerogel-based materials for acoustic applications.
Journal of Non-Crystalline Solids,2021,562:120770
|
CSCD被引
8
次
|
|
|
|
14.
Shi B. Fabrication and applications of polyimide nano-aerogels.
Composites Part A,2021,143:106283
|
CSCD被引
5
次
|
|
|
|
15.
Chakraborty S. Synthesis and characterization of fibre reinforced silica aerogel blankets for thermal protection.
Advances in Materials Science & Engineering,2016,2016:2495623
|
CSCD被引
4
次
|
|
|
|
16.
Duraes L. Effect of additives on the properties of silica based aerogels synthesized from methyltrimethoxysilane(MTMS).
The Journal of Supercritical Fluids,2015,106:85-92
|
CSCD被引
4
次
|
|
|
|
17.
Iswars S. Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers.
Acta Materialia,2018,147:322-328
|
CSCD被引
3
次
|
|
|
|
18.
Demilecamps A. Cellulose-silica aerogels.
Carbohydr Polym,2015,122:293-300
|
CSCD被引
7
次
|
|
|
|
19.
Wu X. A new rapid and economical onestep method for preparing SiO_2 aerogels using supercritical extraction.
Powder Technology,2017,312:1-10
|
CSCD被引
4
次
|
|
|
|
20.
Liu G. Recent advances in joining of SiC-based materials (monolithic SiC and SiC_f/SiC composites): Joining processes, joint strength, and interfacial behavior.
Journal of Advanced Ceramics,2019,8(1):19-38
|
CSCD被引
22
次
|
|
|
|
|