基于变刚度自适应导纳机制的机械臂恒力控制
Constant force control of manipulator based on variable stiffness adaptive admittance mechanism
查看参考文献26篇
文摘
|
工业机械臂在诸如打磨抛光等接触式作业任务中对环境刚度信息存在一定的依赖性,未知环境刚度信息将严重影响机器人的力位控制精度,使得作业效果难以得到保证.为解决环境信息不足或未知情况下的力/位置精确控制问题,本文首先提出了一种新的自适应环境刚度在线估计方法,针对时变的环境刚度进行实时估计,由此预测生成后继的机械臂参考轨迹点,随后提出了一种根据力跟踪误差实时调整末端工具手刚度系数的变刚度导纳恒力控制方法,并结合李雅普诺夫稳定性理论给出了整体控制律的收敛性证明.针对刚柔两种末端工具手和多种不同的曲面工件开展了实验研究,并与传统PID控制方法和传统导纳控制方法进行了对比,其结果表明本文所提出的复合控制方法可在不同工况条件下实现机器人运动过程中接触力的快速柔顺调节,并获得4.55%以内的最优力控误差效果,证明了本文所提出方法的有效性与可行性. |
其他语种文摘
|
The industrial manipulator has a certain dependence on the environmental stiffness information in contact tasks such as grinding and polishing. The unknown environmental stiffness information will seriously affect the force and position control accuracy of the robot, making it difficult to guarantee the operation effect. In order to solve the problem of precise force/position control in the case of insufficient or unknown environmental information, a new online estimation method of adaptive environment stiffness is firstly proposed in this paper, which can estimate the time-varying environmental stiffness in real time, and then predict and generate subsequent reference trajectory points of the manipulator. Then, a variable stiffness admittance constant force control method is proposed to adjust the stiffness coefficient of the end tool hand in real time according to the force tracking error, and the convergence proof of the overall control law is given combined with the Lyapunov stability theory. The experimental research is carried out on two kinds of rigid and flexible end tool hands and a variety of different surface workpieces, and compared with the traditional PID control method and the traditional admittance control method. The results show that the composite control method proposed in this paper can be used in different work The rapid and compliant adjustment of the contact force during the robot motion is realized under the condition of the robot, and the optimal force control error effect within 4.55% is obtained, which proves the effectiveness and feasibility of the method proposed in this paper. |
来源
|
控制理论与应用
,2023,40(10):1880-1888 【核心库】
|
DOI
|
10.7641/CTA.2023.11208
|
关键词
|
机械臂
;
打磨作业
;
恒力控制
;
自适应环境刚度
;
变刚度导纳控制
|
地址
|
东南大学自动化学院, 复杂工程系统测量与控制教育部重点实验室, 江苏, 南京, 210096
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-8152 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金项目
;
江苏省科技成果转化资金项目
|
文献收藏号
|
CSCD:7604088
|
参考文献 共
26
共2页
|
1.
Luo Z W. Control design of robot for compliant manipulation on dynamic environments.
IEEE Transactions on Robotics and Automation,1993,9(3):286-296
|
CSCD被引
2
次
|
|
|
|
2.
张铁. 基于浮动平台的机器人恒力控制研磨方法.
上海交通大学学报,2020,54(5):515-523
|
CSCD被引
4
次
|
|
|
|
3.
Park J. A Haptic teleoperation approach based on contact force control.
The International Journal of Robotics Research,2006,25(5/6):575-591
|
CSCD被引
2
次
|
|
|
|
4.
Li Z. A fuzzy adaptive admittance controller for force tracking in an uncertain contact environment.
IET Control Theory & Applications,2021,15(17):2158-2170
|
CSCD被引
3
次
|
|
|
|
5.
Hogan N. Impedance control: An approach to manipulation.
Proceedings of 1984 American Control Conference,1984:304-313
|
CSCD被引
4
次
|
|
|
|
6.
Kazerooni H. Robust compliant motion for manipulators, part I: The fundamental concepts of compliant motion.
IEEE Journal on Robotics & Automation,1986,2(2):83-92
|
CSCD被引
8
次
|
|
|
|
7.
Heinrichs B. Positionbased impedance control of an industrial hydraulic manipulator.
IEEE Control Systems,1997,17(1):46-52
|
CSCD被引
5
次
|
|
|
|
8.
Peng G. Robust admittance control of optimized robot-environment interaction using reference adaptation.
IEEE Transactions on Neural Networks and Learning Systems,2022,34(9):5804-5815
|
CSCD被引
1
次
|
|
|
|
9.
Yu W. Simplified stable admittance control using end-effector orientations.
International Journal of Social Robotics,2020,12(5):1061-1073
|
CSCD被引
3
次
|
|
|
|
10.
甘亚辉. 非结构环境下的机器人自适应变阻抗力跟踪控制方法.
控制与决策,2019,34(10):2134-2142
|
CSCD被引
14
次
|
|
|
|
11.
Wang L. Updating virtual fixtures from exploration data in force-controlled model-based telemanipulation.
ASME International Design Engineering Technical Conference/Computer and Information in Engineering Conference,2016:1-10
|
CSCD被引
1
次
|
|
|
|
12.
Zhang X. Adaptive force tracking control of a magnetically navigated microrobot in uncertain environments.
IEEE/ASME Transactions on Mechatronics,2017,22(4):1644-1651
|
CSCD被引
5
次
|
|
|
|
13.
Roveda L. Optimal impedance force-tracking control design with impact formulation for interaction tasks.
IEEE Robotics and Automation Letters,2016,1(1):130-136
|
CSCD被引
11
次
|
|
|
|
14.
朱国昕. 基于预测控制的微创血管手术导管机器人系统力跟踪.
伺服控制,2015(1):50-52,39
|
CSCD被引
2
次
|
|
|
|
15.
Cojbasic Z M. Hybrid industrial robot compliant motion control.
Automatic Control and Robotics,2008,1(7):99-110
|
CSCD被引
1
次
|
|
|
|
16.
柳洪义. 在未知环境下基于阻抗模型的受限机械手模糊力控制方法.
东北大学学报,2005,26(8):766-769
|
CSCD被引
4
次
|
|
|
|
17.
李二超.
未确知环境下机器人力控制技术研究,2013
|
CSCD被引
1
次
|
|
|
|
18.
李正义.
机器人与环境间力/位置控制技术研究与应用,2011
|
CSCD被引
15
次
|
|
|
|
19.
Kronander K. Stability considerations for variable impedance control.
IEEE Transactions on Robotics,2016,32(5):1298-1305
|
CSCD被引
10
次
|
|
|
|
20.
Jung S. Force tracking impedance control of robot manipulators under unknown environment.
IEEE Transactions on Control Systems Technology,2004,12(3):474-483
|
CSCD被引
32
次
|
|
|
|
|