蛇绿岩豆荚状铬铁矿床研究进展与展望
Progress and prospect for researches of podiform chromite deposits in ophioilite
查看参考文献199篇
文摘
|
赋存于蛇绿岩中的豆荚状铬铁矿床是全球铬资源的主要来源之一,具有重要战略及经济价值。目前关于豆荚状铬铁矿床的成因尚存分歧。本文总结了全球豆荚状铬铁矿床在矿床地质和矿床地球化学方面的共性特征,以及豆荚状铬铁矿床的成矿模型。这些模型在解释豆荚状铬铁矿矿床成因时还存在一些问题,如成矿母岩浆的地幔源区特征、形成条件、性质,难以限定成矿母岩浆的通量,如何精细刻画地幔中Cr及铬铁矿迁移-富集过程,俯冲动力学过程对成矿有何贡献,等。针对这些问题,未来的工作可聚焦于熔体包裹体研究、探索矿体下部是否存在深部岩浆房、熔-岩反应及流体搬运铬铁矿的实验岩石学及热力学模拟研究,以及探索与俯冲过程密切相关的成矿因素。 |
其他语种文摘
|
The podiform chromite deposit hosted in ophiolites is one of main sources of global Cr resources, with great strategic and economic values. Currently, its metallogenesis is still disputed. In this paper, we have summarized the common features of global podiform chromite deposits in terms of deposit geology and deposit geochemistry and have reviewed metallogenic models of podiform chromite deposits. Current metallogenic models for podiform chromite deposits could not be used to thoroughly explain the formation of podiform chromite deposits. The following issues should be further resolved in future. They include characteristics of mantle source, formation conditions and natures of metallogenic parental melts, the hardly constrained fluxes of metallogenic parental melts, how to finely depict migration and enrichment processes of Cr metal and chromite in the mantle, what kind of contributions of the slab-subduction dynamic process to the formation of podiform chromite deposits. To answer these questions, future researches should be focused on studying the melt inclusion, exploring whether there was large magma chamber beneath ore bodies, undertaking experimental petrology and thermodynamic modeling regarding the melt-rock interaction and the chromite transportation by fluids, and exploring ore-forming factors that are closely related to the subduction process. |
来源
|
矿物岩石地球化学通报
,2023,42(5):1078-1100 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2023.42.111
|
关键词
|
豆荚状铬铁矿床
;
成矿模型
;
蛇绿岩
;
地球化学
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
青藏高原综合科学考察研究项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:7600855
|
参考文献 共
199
共10页
|
1.
Abuamarah B A. Suprasubduction-zone origin of the podiform chromitites of the Bir Tuluhah ophiolite, Saudi Arabia, during Neoproterozoic assembly of the Arabian Shield.
Lithos,2020,360/361:105439
|
CSCD被引
1
次
|
|
|
|
2.
Akmaz R M. Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis.
Ore Geology Reviews,2014,58:208-224
|
CSCD被引
15
次
|
|
|
|
3.
Akbulut M. Tracing ancient events in the lithospheric mantle: A case study from ophiolitic chromitites of SW Turkey.
Journal of Asian Earth Sciences,2016,119:1-19
|
CSCD被引
3
次
|
|
|
|
4.
Anonymous. Penrose field conference on ophiolites.
Geotimes,1972,17:24-25
|
CSCD被引
44
次
|
|
|
|
5.
Arai S. Dunite-harzburgite-chromitite complexes as refractory residue in the Sangun-Yamaguchi Zone, Western Japan.
Journal of Petrology,1980,21(1):141-165
|
CSCD被引
5
次
|
|
|
|
6.
Arai S. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products.
Economic Geology,1994,89(6):1279-1288
|
CSCD被引
31
次
|
|
|
|
7.
Arai S. Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction.
Resource Geology,1997,47(4):177-187
|
CSCD被引
5
次
|
|
|
|
8.
Arai S. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: A comparison between abyssal and alpine-type podiform chromitites.
Lithos,1998,43:1-14
|
CSCD被引
38
次
|
|
|
|
9.
Arai S. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference.
Earth and Planetary Science Letters,2013,379:81-87
|
CSCD被引
29
次
|
|
|
|
10.
Arai S. Precipitation and dissolution of chromite by hydrothermal solutions in the Oman ophiolite: New behavior of Cr and chromite.
American Mineralogist,2014,99(1):28-34
|
CSCD被引
5
次
|
|
|
|
11.
Arai S. Podiform chromitites do form beneath mid-ocean ridges.
Lithos,2015,232:143-149
|
CSCD被引
12
次
|
|
|
|
12.
Arai S. Formation and modification of chromitites in the mantle.
Lithos,2016,264:277-295
|
CSCD被引
38
次
|
|
|
|
13.
Auge T. Chromite deposits in the northern Oman ophiolite: Mineralogical constraints.
Mineralium Deposita,1987,22(1):1-10
|
CSCD被引
15
次
|
|
|
|
14.
Avci E. Ophiolitic chromitites from the Kizilyuksek area of the Pozanti-Karsanti ophiolite (Adana, southern Turkey): Implication for crystallization from a fractionated boninitic melt.
Ore Geology Reviews,2016,90:166-183
|
CSCD被引
1
次
|
|
|
|
15.
Bai W J. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet.
Canadian Journal of Earth Sciences,1993,30(8):1650-1659
|
CSCD被引
46
次
|
|
|
|
16.
Bai Y. Formation and implication of a Cr-bearing spinel seam by interaction between alkali basaltic melt and lherzolite.
Ore Geology Reviews,2023,158:105485
|
CSCD被引
2
次
|
|
|
|
17.
Ballhaus C. Origin of podiform chromite deposits by magma mingling.
Earth and Planetary Science Letters,1998,156(3/4):185-193
|
CSCD被引
27
次
|
|
|
|
18.
Bao P S. Origin of the Zedang and Luobusa Ophiolites, Tibet.
Acta Geologica Sinica (English Edition),2014,88(2):669-698
|
CSCD被引
9
次
|
|
|
|
19.
Bedard J H. Formation of chromitites by assimilation of crustal pyroxenites and gabbros into peridotitic intrusions: North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada.
Journal of Geophysical Research: Solid Earth,1998,103(B3):5165-5184
|
CSCD被引
4
次
|
|
|
|
20.
Bedard. Petrogenesis of boninites from the Betts Cove ophiolite, Newfoundland, Canada: Identification of subducted source components.
Journal of Petrology,1999,40(12):1853-1889
|
CSCD被引
37
次
|
|
|
|
|