一种冲击噪声下相干分布源多峰DOA估计方法
A Multimodal DOA Estimation Method of Coherently Distributed Sources in Impulse Noise
查看参考文献30篇
文摘
|
针对现有相干分布源波达方向(Direction Of Arrival, DOA)估计方法计算量大、抗冲击噪声能力弱和不能有效去相干等难题,本文提出了一种冲击噪声下相干分布源多峰DOA估计方法,并推导了冲击噪声下相干分布源DOA估计的克拉美罗界.为了实现冲击噪声下相干分布源DOA估计,采用加权范数协方差抑制冲击噪声,进而首次推导出多峰加权信号子空间拟合方程,并设计了一种多峰量子秃鹰算法快速无量化误差求解.仿真结果表明,所提方法在冲击噪声下能够以较小的快拍数实现相干分布源DOA估计,且无需额外的解相干操作即可有效去相干.与一些已有的高精度DOA估计方法相比,所提方法仿真时间明显缩短,且具有更高的估计精度和估计成功概率,突破了已有相干分布源DOA估计方法的应用局限,可推广应用于其他复杂的DOA估计问题中. |
其他语种文摘
|
To address the problems of the existing direction of arrival (DOA) estimation methods of coherently distributed sources, such as huge computational complexity, inferior performance in impulse noise and ineffective decoherence ability, a multimodal DOA estimation method of coherently distributed sources in impulse noise is proposed and the Cramer-Rao bound is derived for DOA estimation of coherently distributed sources in the impulse noise. A multimodal weighted signal subspace fitting equation, employing the weighted norm covariance, is derived firstly to achieve the DOA estimation of coherently distributed sources in the impulse noise, meanwhile, a multimodal quantum bald eagle algorithm is designed to quickly solve the derived equation without quantization error. Simulation results show that the proposed method can achieve the DOA estimation of coherently distributed sources with a small number of snapshots in the impulse noise, and can locate coherent sources without additional decoherence operations. Compared with the existing high precision DOA estimation methods, the proposed method has shorter simulation time and higher estimation accuracy and successful rate, which breaks through the application limitations of the existing coherently distributed source DOA estimation methods and can be popularized and applied in other complex DOA estimation problems. |
来源
|
电子学报
,2023,51(9):2330-2340 【核心库】
|
DOI
|
10.12263/DZXB.20211655
|
关键词
|
相干分布源
;
DOA估计
;
冲击噪声
;
多峰加权信号子空间拟合
;
多峰量子秃鹰算法
;
克拉美罗界
|
地址
|
1.
哈尔滨工程大学信息与通信工程学院, 黑龙江, 哈尔滨, 150001
2.
哈尔滨工程大学智能科学与工程学院, 黑龙江, 哈尔滨, 150001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
黑龙江省自然科学基金
;
黑龙江省博士后基金
|
文献收藏号
|
CSCD:7592954
|
参考文献 共
30
共2页
|
1.
Shi J P. Nested MIMO radar: Coarrays, tensor modeling, and angle estimation.
IEEE Transactions on Aerospace and Electronic Systems,2021,57(1):573-585
|
CSCD被引
16
次
|
|
|
|
2.
Das A. Real-valued sparse Bayesian learning for off-grid direction-of-arrival (DOA) estimation in ocean acoustics.
IEEE Journal of Oceanic Engineering,2021,46(1):172-182
|
CSCD被引
5
次
|
|
|
|
3.
Wang F Y. Direction of arrival estimation of wideband sources using sparse linear arrays.
IEEE Transactions on Signal Processing,2021,69:4444-4457
|
CSCD被引
3
次
|
|
|
|
4.
Feng M Y. A reduced-dimension MUSIC algorithm for monostatic FDA-MIMO radar.
IEEE Communications Letters,2021,25(4):1279-1282
|
CSCD被引
10
次
|
|
|
|
5.
Ahmed T. A higher-order propagator method for 2D-DOA estimation in massive MIMO systems.
IEEE Communications Letters,2020,24(3):543-547
|
CSCD被引
6
次
|
|
|
|
6.
Feng M Y. An improved ESPRIT-based algorithm for monostatic FDA-MIMO radar with linear or nonlinear frequency increments.
IEEE Communications Letters,2021,25(7):2375-2379
|
CSCD被引
2
次
|
|
|
|
7.
Song S S. Maximum likelihood sensor array calibration using non-approximate hession matrix.
IEEE Signal Processing Letters,2021,28:688-692
|
CSCD被引
2
次
|
|
|
|
8.
Meng D D. Robust weighted subspace fitting for DOA estimation via block sparse recovery.
IEEE Communications Letters,2020,24(3):563-567
|
CSCD被引
4
次
|
|
|
|
9.
Valaee S. Parametric localization of distributed sources.
IEEE Transactions on Signal Processing,1995,43(9):2144-2153
|
CSCD被引
66
次
|
|
|
|
10.
Shahbazpanahi S. Distributed source localization using ESPRIT algorithm.
IEEE Transactions on Signal Processing,2001,49(10):2169-2178
|
CSCD被引
36
次
|
|
|
|
11.
Xiong W M. Performance analysis of distributed source parameter estimator (DSPE) in the presence of modeling errors due to the spatial distributions of sources.
Signal Processing,2018,143:146-151
|
CSCD被引
3
次
|
|
|
|
12.
Xu H. Linear-shrinkage-based DOA estimation for coherently distributed sources considering mutual coupling in massive MIMO systems.
AEU-International Journal of Electronics and Communications,2020,126:153398
|
CSCD被引
2
次
|
|
|
|
13.
Nam J G. 2-D nominal angle estimation of multiple coherently distributed sources in a uniform circular array.
IEEE Antennas and Wireless Propagation Letters,2014,13:415-418
|
CSCD被引
3
次
|
|
|
|
14.
Wu T. DOA estimation of two-dimensional coherently distributed sources based on spatial smoothing of uniform rectangular arrays.
International Journal of Antennas and Propagation,2019,2019:1-12
|
CSCD被引
1
次
|
|
|
|
15.
Mahmood A. On singlecarrier communication in additive white symmetric alphastable noise.
IEEE Transactions on Communications,2014,62(10):3584-3599
|
CSCD被引
2
次
|
|
|
|
16.
Tzagkarakis G. Compressive sensing using symmetric alpha-stable distributions for robust sparse signal reconstruction.
IEEE Transactions on Signal Processing,2019,67(3):808-820
|
CSCD被引
2
次
|
|
|
|
17.
Ma X Y. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics.
IEEE Transactions on Signal Processing,1996,44(11):2669-2687
|
CSCD被引
75
次
|
|
|
|
18.
Tsakalides P. The robust covariationbased MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments.
IEEE Transactions on Signal Processing,1996,44(7):1623-1633
|
CSCD被引
50
次
|
|
|
|
19.
He J. Snapshot-instantaneous ||. ||infin normalization against heavy-tail noise.
IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):1221-1227
|
CSCD被引
7
次
|
|
|
|
20.
安春莲. 基于中值滤波预处理的强冲击噪声背景测向方法.
电子学报,2021,49(6):1159-1166
|
CSCD被引
4
次
|
|
|
|
|