基于仿生曲面复眼相机的目标定位技术
Target Localization Technology Based on Biomimetic Curved Compound Eye Camera
查看参考文献17篇
文摘
|
开展了基于仿生曲面复眼相机的空间目标定位实验研究。采用CALibration Tag标定板结合MATLAB标定工具箱对自研仿生复眼相机进行内外参数的标定。针对目标的三维定位,从曲面复眼相机成像原理出发并利用相机定标参数,确定目标点在复眼相机中各子眼坐标系下坐标的线性关系并建立线性方程组,通过最小二乘法进行求解以获得目标点的准确空间定位。设计了光斑定位实验,实验结果表明,在至少4 m的工作距离内,仿生曲面复眼相机的定位误差可以控制在2%以内,该目标定位方法应用于仿生曲面复眼相机能实现较高精度的目标定位。在此基础上,采用尺度不变特征转变算法实现了两个子眼所拍摄子图像的特征点粗匹配,结合随机抽取一致算法去除错误匹配点,进而由特征点在子眼像素坐标系中的二维坐标反演出其在空间坐标系中的三维坐标,最后通过对所有点进行点云拼接获得完整的重构点云。实验结果表明,对距离相机约0.6 m处的边长为5.5 cm的正方体可以实现较好的三维立体重构。 |
其他语种文摘
|
Using a vision system to locate a target is a necessary step for its three-dimensional detection of the target.The traditional single-aperture imaging system can only obtain the geometric image information of the target.A compound eye vision system has the advantages of large field of view,large depth of field,multi-channel imaging,and can obtain the depth information of the target and be sensitive to fast moving targets.At present,a common visual positioning method is to use the binocular vision system to locate the target based on the parallax between two cameras.However,because the binocular vision system has only one set of constraints,and the baseline is fixed,the binocular vision system has low positioning accuracy in the long distance,while the compound vision system has more constraints because of the number of sub-eyes.In the long distance,the positioning accuracy is higher than the binocular vision system.It has aroused a wide attention of researchers.This paper uses the bionic curved compound eye camera developed in the laboratory to carry out the research of 3D positioning and 3D reconstruction.The compound eye vision system consists of a curved compound eye,an optical relay image conversion subsystem and a highdefinition image sensor.In this paper,CAL Tag calibration board and MATLAB stereo calibration toolbox is used to calibrate the internal parameter matrix of the compound eye camera and the rotation matrix and translation vector between the sub-eye and the world coordinate system.Based on the principle of binocular vision positioning,a mathematical model for multi eye positioning is established on a compound eye vision system developed in the laboratory,and positioning experiments are conducted.The experimental system includes a laser rangefinder,black cardboard,and a compound eye vision system.The laser spot is used as a positioning target.Because the shape of the sub-eye is circular,the hough circle transformation algorithm is used to detect the sub-eye of the compound eye system,and the sub-eye number is determined according to the center coordinates and radius of the circle.Because this experiment is carried out under dark conditions,the background gray value is low and the spot gray value is high,so the gray centroid method is used to locate the centroid of the spot and obtain the centroid of the spot taken by different subeyes.The three-dimensional coordinates of the centroid of the spot are obtained from the coordinates of the centroid of the spot in the camera pixel coordinate system according to the corresponding relationship between the pixel coordinate system and the world coordinate system.The linear equations of several subeyes are combined to form the overdetermined equations and the optimal solution is obtained by the least square method.The distance measurement experiment results show that the distance measurement error of the compound eye camera is less than 2% within a range of at least 4 meters.The experimental results show that the bionic curved compound eye camera prepared in the laboratory could carry out more accurate three-dimensional positioning of objects in space.The error caused by the laser jitter and the size change of the light spot with the distance change on the positioning result is analyzed in detail.In the aspect of target 3D reconstruction,the sift algorithm is used to detect and match the feature points of the target images of different sub-eyes,and the RANSAC algorithm is used to remove the wrong matching points,to obtain the accurate feature point matching of the target captured by different sub-eyes. |
来源
|
光子学报
,2023,52(9):0911003 【核心库】
|
DOI
|
10.3788/gzxb20235209.0911003
|
关键词
|
多通道成像
;
相机标定
;
图像处理
;
三维定位
;
三维重构
|
地址
|
1.
西安石油大学理学院, 西安, 710065
2.
中国科学院西安光学精密机械研究所, 中国科学院光谱成像技术重点实验室, 西安, 710072
3.
中国科学院大学光电学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
西安石油大学研究生联合培养基地项目
;
西安石油大学创新与实践能力培养项目
|
文献收藏号
|
CSCD:7580230
|
参考文献 共
17
共1页
|
1.
Besl P J. Three-dimensional object recognition.
ACM Computing Surveys,1985,17(1):75-145
|
CSCD被引
13
次
|
|
|
|
2.
Chai Y. In-sensor computing for machine vision.
Nature,2020,579(7797):32-33
|
CSCD被引
23
次
|
|
|
|
3.
Afshari H. The PANOPTIC camera: a plenoptic sensor with real-time omnidirectional capability.
Journal of Signal Processing Systems for Signal Image and Video Technology,2013,70(3):305-328
|
CSCD被引
7
次
|
|
|
|
4.
Song Y M. Digital cameras with designs inspired by the arthropod eye.
Nature,2013,497(7447):95-99
|
CSCD被引
90
次
|
|
|
|
5.
刘艳. 人工复眼成像三维定位系统设计.
光电工程,2014,41(5):89-94
|
CSCD被引
4
次
|
|
|
|
6.
Liu Yan. An artificial compound eye system for large field imaging.
SPIE. 8558,2012:335-340
|
CSCD被引
1
次
|
|
|
|
7.
郭书基. 基于大视场人工复眼定位技术.
光子学报,2016,45(5):0512003
|
CSCD被引
6
次
|
|
|
|
8.
何建争.
球面仿生复眼的标定与定位研究,2017
|
CSCD被引
3
次
|
|
|
|
9.
朱其淘. 提高仿生复眼定位精度研究.
新技术新工艺,2019(9):61-66
|
CSCD被引
1
次
|
|
|
|
10.
李伦. 可变焦距的非球面复眼优化及定位技术.
光子学报,2018,47(10):1022001
|
CSCD被引
3
次
|
|
|
|
11.
高文静. 基于目标运动的复眼式双目视觉测距法.
应用光学,2020,41(3):571-579
|
CSCD被引
2
次
|
|
|
|
12.
袁泽强. 多相机式仿生曲面复眼的标定与目标定位.
光子学报,2021,50(9):0911005
|
CSCD被引
3
次
|
|
|
|
13.
Liu Jinheng. Long-working-distance 3D measurement with a bionic curved compound-eye camera.
Optics Express,2022,30(20):36985-36995
|
CSCD被引
2
次
|
|
|
|
14.
许黄蓉. 无人机载型曲面仿生复眼成像测速系统.
光子学报,2021,50(9):0911004
|
CSCD被引
4
次
|
|
|
|
15.
于晓丹. 小型无人机载大视场复眼相机光学系统设计.
光子学报,2019,48(7):0722003
|
CSCD被引
4
次
|
|
|
|
16.
Xu Huangrong. Biomimetic curved compound-eye camera with a high resolution for the detection of distant moving objects.
Optics Letters,2020,45(24):6863-6866
|
CSCD被引
4
次
|
|
|
|
17.
Atcheson B. CALTag: high precision fiducial markers for camera calibration.
Proceedings of the Vision, Modeling, and Visualization Workshop 2010,2010:41-48
|
CSCD被引
1
次
|
|
|
|
|