碳纤维-碳纳米管增强相的构筑及其三相复合材料力学性能
Construction of carbon fiber-carbon nanotube reinforcing phase and mechanical properties of its three-phase composites
查看参考文献22篇
文摘
|
利用化学接枝的方法成功将碳纳米管(CNT)-聚醚酰亚胺(PEI)接枝到碳纤维(CF)表面,构筑CF-g-CNT增强相。结果表明,CF-g-CNT纤维的构筑可以有效地改善复合材料的界面、抗冲击和弯曲性能。考虑增强相对复合材料力学性能的影响,与双马来酰亚胺(BMI)复合后形成的CF-g-CNT/BMI复合材料的界面剪切强度、冲击强度、弯曲模量和弯曲强度分别较CF/BMI提高48.8%,10.8%,5.2%和14.6%;CF-g-CNT/BMI-PEI-CNT复合材料的界面剪切强度、冲击强度、弯曲模量和弯曲强度分别较CF/BMI-PEI-CNT提高56.9%,27.1%,12.5%和16.1%。综合考虑基体相和增强相对复合材料力学性能的影响,CF-g-CNT/BMI-PEI-CNT复合材料的界面剪切强度、冲击强度、弯曲模量和弯曲强度分别较CF/BMI提高57.7%,33.7%,20.0%和23.7%。CF-g-CNT中CNT-PEI可以有效地改变复合材料界面构成,改变界面处水平应力和垂直应力的扩展路径,有效避免应力集中,进而提高复合材料的力学性能。 |
其他语种文摘
|
The carbon nanotube(CNT)- polyetherimide(PEI)was successfully grafted onto the surface of carbon fibers(CF)through chemical grafting method for constructing a CF-g-CNT reinforcing phase.Results show the construction of CF-g-CNT fiber can effectively improve the interface,impact resistance and bending properties of the composites.Considering the effect of strengthening phase on the mechanical properties of composites,the interfacial shear strength,impact strength,flexural modulus and flexural strength of CF-g-CNT/BMI composites respectively increase by 48.8%, 10.8%,5.2% and 14.6%,companed with those of CF/BMI.In addition,the interfacial shear strength,impact strength,flexural modulus and flexural strength of CF-g-CNT/BMI-PEI-CNT composites are 56.9%,27.1%,12.5% and 16.1% higher than those of CF/BMI-PEI-CNT, respectively.The interfacial shear strength,impact strength,flexural modulus and flexural strength of CF-g-CNT/BMI-PEI-CNT composites increase by 57.7%,33.7%,20.0%and 23.7%compared with CF/BMI.The CNT-PEI in CF-g-CNT can effectively change the interface composition and change the expansion path of horizontal stress or vertical stress at the interface,which is beneficial to disperse the stress concentration as well as improve the mechanical properties of the composites. |
来源
|
材料工程
,2023,51(10):178-187 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000749
|
关键词
|
碳纳米管
;
碳纤维
;
化学接枝法
;
力学性能
|
地址
|
1.
中电建路桥集团有限公司, 北京, 100120
2.
江苏宏远科技工程有限公司, 江苏, 常州, 213100
3.
同济大学材料科学与工程学院, 上海, 201804
4.
同济大学, 先进土木工程材料教育部重点实验室, 上海, 201804
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
常州市科技支撑计划(工业)
|
文献收藏号
|
CSCD:7579876
|
参考文献 共
22
共2页
|
1.
Yao S S. Recent advances in carbon-fiber-reinforced thermoplastic composites:a review.
Composites Part B,2018,142:241-250
|
CSCD被引
49
次
|
|
|
|
2.
Forintos N. Multifunctional application of carbon fiber reinforced polymer composites:electrical properties of the reinforcing carbon fibers-a short review.
Composites Part B,2019,162:331-343
|
CSCD被引
20
次
|
|
|
|
3.
Karatasm A. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials.
Defence Technology,2018,14(4):318-326
|
CSCD被引
35
次
|
|
|
|
4.
Shen W. Surface chemical functional groups modification of porous carbon.
Recent Patents on Chemical Engineering,2008,1(1):27-40
|
CSCD被引
21
次
|
|
|
|
5.
Rahmat M. Carbon nanotube-polymer interactions in nanocomposites:a review.
Composites Science and Technology,2011,72(1):72-84
|
CSCD被引
8
次
|
|
|
|
6.
Salvetat J P. Mechanical properties of carbon nanotubes.
Applied Physics A,1999,69(3):255-260
|
CSCD被引
77
次
|
|
|
|
7.
Sun D. Flexible highperformance carbon nanotube integrated circuits.
Nature Nanotechnology,2011,6(3):156-161
|
CSCD被引
2
次
|
|
|
|
8.
Eatemadi A. Carbon nanotubes:properties,synthesis,purification,and medical applications.
Nanoscale Research Letters,2014,9(1):1-13
|
CSCD被引
23
次
|
|
|
|
9.
Bai Y X. Super-durable ultralong carbon nanotubes.
Science,2020,369:1104-1106
|
CSCD被引
28
次
|
|
|
|
10.
Zhou T. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers.
Materials & Design,2021,203:109557
|
CSCD被引
5
次
|
|
|
|
11.
Koziol K. High-performance carbon nanotube fiber.
Science,2007,318:1892-1895
|
CSCD被引
43
次
|
|
|
|
12.
黄东辉. 自组装蒙脱土-碳纳米管对玻纤增强复合材料力学及界面性能的影响.
复合材料科学与工程,2022(7):39-44
|
CSCD被引
1
次
|
|
|
|
13.
王玉周. 氨基化碳纳米管、石墨烯协同增强PA66复合材料.
塑料,2022,51(6):14-18
|
CSCD被引
2
次
|
|
|
|
14.
Park S J. CNT/epoxy interleaves for strengthening performance of filament wound composite structures.
International Journal of Modern Physics B,2021,35(14):2140001
|
CSCD被引
1
次
|
|
|
|
15.
Zhang L Q. Improving the interfacial bonding of CNT/Cu composites using CPD bridges.
Materials Science and Engineering:A,2022,845:143222
|
CSCD被引
4
次
|
|
|
|
16.
Xia W. Strengthening and toughening behaviors and dynamic constitutive model of carbon-based hierarchical fiber modified concrete:cross-scale synergistic effects of carbon nanotubes and carbon fiber.
Journal of Building Engineering,2022(63):105482
|
CSCD被引
1
次
|
|
|
|
17.
王新威. 聚醚酰亚胺的性能、聚合与纺丝研究.
材料导报,2007,5(21):408-412
|
CSCD被引
3
次
|
|
|
|
18.
梁丹. 双马来酰亚胺树脂增韧改性研究新进展.
材料导报,2007,21(9):77-79
|
CSCD被引
9
次
|
|
|
|
19.
邱军. 无机功能材料改性双马来酰亚胺树脂的研究进展.
玻璃钢/复合材料,2011(4):63-67
|
CSCD被引
4
次
|
|
|
|
20.
Li T. Functionalized carbon nanotubes for highly active and metal-free electrocatalysts in hydrogen evolution reaction.
Electrocatalysis,2018,9(5):573-581
|
CSCD被引
2
次
|
|
|
|
|