不同沉积路径下钛合金叶片等离子弧增材制造过程的数值模拟
Numerical simulation of plasma arc additive manufacturing process of titanium alloy blade under different deposition paths
查看参考文献21篇
文摘
|
等离子弧直接沉积技术因热输入集中,材料易产生较大的残余应力,发生不均匀形变,极大影响成型零件的质量。采用生死单元技术、瞬态热模型和热弹塑性模型对增材制造过程中的热过程和残余应力进行数值模拟计算,研究不同沉积路径对等离子弧增材制造中TC4叶片热循环特性和残余应力分布规律的影响。同时通过热实验验证了模型的有效性,模拟的热曲线与实验结果吻合。结果表明,等离子弧直接沉积截面为“月牙”形的叶片零件,两种路径在沉积层与基板的连接区域都会产生较之其余区域更高的残余应力,轮廓偏移路径有较之全光栅式路径更好的散热情况,轮廓偏移路径沉积层的残余应力明显低于全光栅式路径。多层零件的新层开始沉积时,先前沉积层会经历复杂的热循环,峰值温度由底层向中间层逐渐升高。随着新层不断地沉积在顶部,零件瞬态应力分布进行着规律的变化,较大应力位于接近顶层中部区域和底部与基板相接区域,然后保持并逐渐转化为零件内的残余应力。 |
其他语种文摘
|
Due to the concentration of heat input in the plasma arc direct deposition technology,the material was prone to large residual stress and uneven deformation,which greatly affects the quality of the formed parts.All of the birth-death cell technique,the transient thermal model and the thermoelasto- plastic model were adopted for the thermal process and residual stress simulation during the additive manufacturing process.The calculation results were used to study the effects of different deposition paths on the thermal cycle characteristics and residual stress distribution of TC4part in plasma arc additive manufacturing.Meanwhile,the validation experiment was carried out to check the effectiveness of the finite element model through thermal tests.The simulated thermal curves match the experimental results well.The results show that both paths generate higher residual stress in the area around the arc-extinguishing point than the rest,and the zigzag with contour-offset path has better heat dissipation than the full zigzag path,and the residual stress of the deposited layer of the contour-offset path is significantly lower than that of the full raster path.Previous layers are subjected to a complicated thermal cycles,when the new layers are deposited on old layers.The peak temperature is increased from the bottom layer to the middle layer.As new layer is deposited on top, the transient stress distribution of parts changes regularly.Larger stress is located near the middle of the top layers and the area where the bottom meets the substrate,which is then maintained and gradually converted into residual stress within the part. |
来源
|
材料工程
,2023,51(10):156-164 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000617
|
关键词
|
增材制造
;
TC4
;
飞机叶片
;
热历史
;
残余应力
;
数值模拟
|
地址
|
温州大学机电工程学院, 浙江, 温州, 325800
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
浙江省重点研发计划
|
文献收藏号
|
CSCD:7579874
|
参考文献 共
21
共2页
|
1.
卢秉恒. 增材制造技术———现状与未来.
中国机械工程,2020,31(1):19-23
|
CSCD被引
86
次
|
|
|
|
2.
王华明. 高性能大型金属构件激光增材制造:若干材料基础问题.
航空学报,2014,35(10):2690-2698
|
CSCD被引
217
次
|
|
|
|
3.
Martina F. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V.
Journal of Materials Processing Technology,2012,212(6):1377-1386
|
CSCD被引
45
次
|
|
|
|
4.
Brandl E. Morphology,microstructure, and hardness of titanium(Ti-6Al-4V)blocks deposited by wire-feed additive layer manufacturing(ALM).
Materials Science and Engineering:A,2012,532:295-307
|
CSCD被引
26
次
|
|
|
|
5.
刘世锋. 钛合金及钛基复合材料在航空航天的应用和发展.
航空材料学报,2020,40(3):77-94
|
CSCD被引
78
次
|
|
|
|
6.
Hejripour F. Thermal modeling and characterization of wire arc additive manufactured duplex stainless steel.
Journal of Materials Processing Technology,2019,272:58-71
|
CSCD被引
5
次
|
|
|
|
7.
Bai X. Modeling of the moving induction heating used as secondary heat source in weld-based additive manufacturing.
The International Journal of Advanced Manufacturing Technology,2015,77(1/4):717-727
|
CSCD被引
5
次
|
|
|
|
8.
Xiong J. Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAWbased additive manufacturing with various substrate preheating temperatures.
Applied Thermal Engineering,2017,126:43-52
|
CSCD被引
12
次
|
|
|
|
9.
张嘉. Inconel718微环形零件激光增材制造残余应力数值分析.
机械工程学报,2021,57(18):172-181
|
CSCD被引
5
次
|
|
|
|
10.
Zhan Y. Study on the effect of scanning strategy on residual stress in laser additive manufacturing with the laser ultrasound technique.
Experimental Mechanics,2022,62(4):563-572
|
CSCD被引
2
次
|
|
|
|
11.
Wang J. Effects of scanning strategies on residual stress and deformation by high-power direct energy deposition:island size and laser jump strategy between islands.
Journal of Manufacturing Processes,2022,75:23-40
|
CSCD被引
4
次
|
|
|
|
12.
Zhao H. Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping.
Journal of Materials Processing Technology,2012,212(1):276-285
|
CSCD被引
21
次
|
|
|
|
13.
苏传出. 激光直接沉积CoCrFeNiMn高熵合金:气孔-组织结构-拉伸性能之间的关系.
材料工程,2022,50(3):43-49
|
CSCD被引
5
次
|
|
|
|
14.
Zhang C. Influence of wire-arc additive manufacturing path planning strategy on the residual stress status in one single buildup layer.
The International Journal of Advanced Manufacturing Technology,2020,111(3/4):797-806
|
CSCD被引
2
次
|
|
|
|
15.
Lu X. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4Vparts by directed energy deposition:modelling and experimental calibration.
Additive Manufacturing,2019,26:166-179
|
CSCD被引
15
次
|
|
|
|
16.
Somashekara M A. Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing.
The International Journal of Advanced Manufacturing Technology,2017,90(5/8):2009-2025
|
CSCD被引
7
次
|
|
|
|
17.
Montevecchi F. Idle time selection for wire-arc additive manufacturing:a finite ele-ment-based technique.
Additive Manufacturing,2018,21:479-486
|
CSCD被引
8
次
|
|
|
|
18.
Wang J. Effects of deposition strategies on macro/microstructure and mechanical properties of wire and arc additive manufactured Ti6Al4V.
Materials Science and Engineering: A,2019,754:735-749
|
CSCD被引
11
次
|
|
|
|
19.
Goldar J. A new finite element model for welding heat sources.
Metallurgical Transactions B,1984,15(2):299-305
|
CSCD被引
303
次
|
|
|
|
20.
Ding J. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts.
Computational Materials Science,2011,50(12):3315-3322
|
CSCD被引
44
次
|
|
|
|
|