高熵合金基复合材料的研究进展
Research progress in high entropy alloy matrix composites
查看参考文献72篇
文摘
|
高熵合金自2004年被提出以来,由于其表现出比传统合金更为优异的综合性能,在航空航天、石油化工等领域具有潜在的应用前景,逐渐成为金属材料领域的研究热点。在高熵合金基体中引入合适的增强相形成高熵合金基复合材料(HEAMCs),已成为改善高熵合金综合性能的方法之一。本文综述了近年来国内外关于高熵合金基复合材料的研究现状,就其增强相选择、制备工艺、相结构和组织进行系统的介绍,并归纳了包括强塑性、硬度以及耐磨耐蚀性等高熵合金基复合材料性能的演变规律以及强化机制,最后指出了当前高熵合金基复合材料面临的挑战并展望了未来的研究方向:增强相和基体之间的润湿性严重影响大尺寸复合材料的制备及性能,寻找一种高效简易的方法制备大尺寸复合材料是目前高熵合金基复合材料需要解决的一个问题;增强相颗粒会导致塑性下降,金属基复合材料强度与塑性之间的平衡也有待研究。 |
其他语种文摘
|
High entropy alloys have been proposed in 2004,which are expected to be widely used in aerospace,petrochemical and other fields due to their excellent properties compared with the traditional alloys,and have become a hot spot in current metal material research.It has become one of the methods to improve the comprehensive properties of high entropy alloys by introducing suitable reinforcement phase into the high entropy alloy matrix,and to form high entropy alloy matrix composites(HEAMCs).In this review,according to the current research status in HEAMCs at home and abroad in the past few years,the reinforcement phase selection,preparation method,phase structure,microstructure and strengthening mechanism of HEAMCs were systematically introduced, and the evolution of properties of HEAMCs were summarized,including strength and plasticity, hardness,wear resistance and corrosion resistance.Finally,the challenges to HEAMCs were discussed and future research directions in HEAMCs were suggested.The wettability between the reinforcement phase and the matrix seriously affects the preparation and performance of large-scale composites,and finding an efficient and simple method to prepare large-scale composites is a problem that needs to be solved in highentropy alloy matrix composites;reinforcing particles will lead to a decrease in plasticity,and the balance between strength and plasticity of metal matrix composites also needs to be studied. |
来源
|
材料工程
,2023,51(10):1-12 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000265
|
关键词
|
高熵合金基复合材料
;
增强相
;
制备工艺
;
相结构
;
强度与塑性
;
强化机制
|
地址
|
湖南大学材料科学与工程学院, 长沙, 410082
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:7579858
|
参考文献 共
72
共4页
|
1.
Liu L F. Effect of reinforcing-particle size on the formation of microbands in SiC/6151Al metal matrix composites.
Journal of Materials Science Letters,2001,20(23):2097-2098
|
CSCD被引
1
次
|
|
|
|
2.
Munagala V N V. The role of metal powder properties on the tribology of cold sprayed Ti6Al4V-TiC metal matrix composites.
Surface and Coatings Technology,2021,411:126974
|
CSCD被引
3
次
|
|
|
|
3.
Yang Z Y. Effect of combination variation of particle and matrix on the damage evolution and mechanical properties of particle reinforced metal matrix composites.
Materials Science and Engineering:A,2021,806:140804
|
CSCD被引
3
次
|
|
|
|
4.
叶想平. 颗粒增强金属基复合材料的强化机理研究现状.
材料工程,2018,46(12):28-37
|
CSCD被引
23
次
|
|
|
|
5.
Park B G. Fracture toughness of microsphere Al_2O_3-Al particulate metal matrix composites.
Composites Part B,2008,39(7/8):1270-1279
|
CSCD被引
14
次
|
|
|
|
6.
Senkov O N. Refractory high-entropy alloys.
Intermetallics,2010,18(9):1758-1765
|
CSCD被引
245
次
|
|
|
|
7.
Bhattacharyya S. A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter.
Nature Communications,2019,10:3541
|
CSCD被引
2
次
|
|
|
|
8.
Huhn W P. Prediction of A2to B2phase transition in the high-entropy alloy Mo-Nb-Ta-W.
JOM,2013,65(12):1772-1779
|
CSCD被引
9
次
|
|
|
|
9.
Widom M. Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy.
Metallurgical and Materials Transactions A,2014,45(1):196-200
|
CSCD被引
11
次
|
|
|
|
10.
Widom M. Modeling the structure and thermodynamics of high-entropy alloys.
Journal of Materials Research,2018,33(19):2881-2898
|
CSCD被引
6
次
|
|
|
|
11.
Malatji N. Effect of heat treatment on the microstructure,microhardness,and wear characteristics of AlCrFeCuNi high-entropy alloy.
International Journal of Advanced Manufacturing Technology,2020,111(7/8):2021-2029
|
CSCD被引
1
次
|
|
|
|
12.
Sure J. Preparation of refractory high-entropy alloys by electro-deoxidation and the effect of heat treatment on microstructure and hardness.
JOM,2020,72(11):3895-3905
|
CSCD被引
3
次
|
|
|
|
13.
Wang C W. Microwave vacuum sintering of FeCoNi_(1.5)CuB_(0.5)Y_(0.2) high-entropy alloy:effect of heat treatment on microstructure and mechanical property.
Vacuum,2020,181:109738
|
CSCD被引
1
次
|
|
|
|
14.
Wu W. Amorphization at twin-twin intersected region in FeCoCrNi high-entropy alloy subjected to highpressure torsion.
Materials Characterization,2017,127:111-115
|
CSCD被引
8
次
|
|
|
|
15.
Yim D. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering.
Journal of Alloys and Compounds,2019,781:389-396
|
CSCD被引
14
次
|
|
|
|
16.
Fu Z. Ultrafine TiB_2-TiNiFeCrCoAl high-entropy alloy composite with enhanced mechanical properties.
Materials Science and Engineering:A,2017,702:184-188
|
CSCD被引
4
次
|
|
|
|
17.
Li B. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12wt% TiN particle reinforcements viaselective laser melting assisted additive manufacturing.
Materials Letters,2019,252:88-91
|
CSCD被引
18
次
|
|
|
|
18.
马国彬. 颗粒增强金属基复合材料的研究现状.
铸造设备与工艺,2019(2):50-54
|
CSCD被引
4
次
|
|
|
|
19.
Ding L. In situsynthesis of TiC cermet by spark plasma reaction sintering.
Journal of Alloys and Compounds,2016,661:136-140
|
CSCD被引
4
次
|
|
|
|
20.
Fan Q C. The microstructure and properties of(FeCrNiCo)AlxCuyhigh-entropy alloys and their TiC-reinforced composites.
Materials Science and Engineering:A,2014,598:244-250
|
CSCD被引
17
次
|
|
|
|
|