航空增材制造技术中的跨尺度力学研究进展
Progress of cross-scale mechanics in additive manufacturing technology for aeronautical application
查看参考文献43篇
文摘
|
金属增材制造技术及产品在航空领域中有广阔应用前景,其中既需要结构尺度上的优化设计也需要材料尺度上的精细控制和高效利用。材料微结构作为金属增材制造的典型特征之一,会对材料带来不可避免的性能影响。研究表明,一方面增材制造材料的均匀性、韧性、疲劳断裂特性常常不如传统材料,而另一方面其强度、硬度、耐磨损性能等又往往较传统材料更高,这是微纳米尺度中的尺度效应对具有微结构的金属材料带来的显著影响。在不同的微观非均匀性的情况下,材料能够在强度与韧性间得到一个更优的平衡,而这些方法和成果同时非常适用于增材制造金属材料。因此,增材制造的工艺特性以及人为设计所引入的非均匀结构有望显著提升金属材料的综合性能,对于航空领域的金属增材制造的应用具有重要的指导价值,但其中的许多问题尚不明晰,与材料的其他性能间的协同和拮抗关系还值得进一步研究。 |
其他语种文摘
|
The application of metal additive manufacturing technology and products in the aviation field requires optimized structural design at macroscale and precise manufacture control at microscale. As one of the typical features of additive manufacture, microstructure inevitably affects the material performance. The research has shown that the uniformity, plasticity, and fatigue fracture characteristics of additive manufacturing materials are often inferior to traditional materials, while their strength, hardness, wear resistance, and some microscale properties are often better than traditional materials. The size effect in the micro/nano-scale and the heterogeneous characteristics of materials have a significant impact on metal materials with microstructures. Under different microstructures, materials can achieve a better balance between strength and ductility, which is also applicable to additively manufactured metals. Therefore, the process characteristics of additive manufacturing and the heterogeneities introduced by human design are both expected to significantly improve the comprehensive performance of metals, which have important guiding value for the application of metal additive manufacturing in the aviation field. However, since many of the mechanism of these phenomena are still unclear, the strength-ductility synergistic and antagonistic relationships with other properties of the materials are also worth further research. |
来源
|
航空材料学报
,2023,43(5):1-9 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000091
|
关键词
|
跨尺度力学
;
金属增材制造
;
应变梯度
;
非均匀结构
|
地址
|
1.
中国航空研究院技术研究六部, 北京, 100029
2.
西安交通大学航天航空学院, 西安, 710049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7575078
|
参考文献 共
43
共3页
|
1.
王天元. 航空装备激光增材制造技术发展及路线图.
航空材料学报,2023,43(1):1-17
|
CSCD被引
12
次
|
|
|
|
2.
郑涛. 航空装备电弧熔丝增材制造技术发展及路线规划图.
航空材料学报,2023,43(1):18-27
|
CSCD被引
2
次
|
|
|
|
3.
张国栋. 航空装备电子束增材制造技术发展及路线图.
航空材料学报,2023,43(1):28-38
|
CSCD被引
6
次
|
|
|
|
4.
顾冬冬. 航空航天高性能金属材料构件激光增材制造.
中国激光,2020,47(5):32-55
|
CSCD被引
58
次
|
|
|
|
5.
廉艳平. 金属增材制造若干关键力学问题研究进展.
力学进展,2021,51(3):648-701
|
CSCD被引
33
次
|
|
|
|
6.
王华明. 高性能大型金属构件激光增材制造:若干材料基础问题.
航空学报,2014,35(10):2690-2698
|
CSCD被引
218
次
|
|
|
|
7.
Chaturvedi M. Wire arc additive manufacturing: review on recent findings and challenges in industrial applications and materials characterization.
Metals,2021,11(6):939
|
CSCD被引
3
次
|
|
|
|
8.
张磊. 增材制造超材料及其隐身功能调控的研究进展.
航空材料学报,2018,38(3):10-19
|
CSCD被引
8
次
|
|
|
|
9.
韩启飞. 电弧熔丝增材制造铝合金研究进展.
材料工程,2022,50(4):62-73
|
CSCD被引
16
次
|
|
|
|
10.
Kumar L J. Current trends of additive manufacturing in the aerospace industry.
Advances in 3D Printing & Additive Manufacturing Technologies,2017:39-54
|
CSCD被引
1
次
|
|
|
|
11.
卢秉恒. 增材制造技术———现状与未来.
中国机械工程,2020,31(1):19-23
|
CSCD被引
87
次
|
|
|
|
12.
Carroll B E. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing.
Acta Materialia,2015,87:309-320
|
CSCD被引
115
次
|
|
|
|
13.
Gibson I.
Additive manufacturing technologies. Vol 17,2021
|
CSCD被引
1
次
|
|
|
|
14.
Tan C L. Additive manufacturing of multi-scale heterostructured high-strength steels.
Materials Research Letters,2021,9(7):291-299
|
CSCD被引
4
次
|
|
|
|
15.
Zhou K X. In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy.
Additive Manufacturing,2023,66:103443
|
CSCD被引
2
次
|
|
|
|
16.
Liu Y G. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion.
Acta Materialia,2021,220:117311
|
CSCD被引
8
次
|
|
|
|
17.
张姣姣. 复合磁控溅射Zr-B-N涂层微结构的控制及性能研究.
真空科学与技术学报,2018,38(6):479-486
|
CSCD被引
3
次
|
|
|
|
18.
Khorasani A M. Investigation on the effect of heat treatment and process parameters on the tensile behavior of SLM Ti-6Al-4V parts.
The International Journal of Advanced Manu-facturing Technology,2019,101:3183-3197
|
CSCD被引
4
次
|
|
|
|
19.
Wang H. Introducing C phase in additively manufactured Ti-6Al-4V:a new oxygen-stabilized face-centred cubic solid solution with improved mechanical properties.
Materials Today,2022,61:11-21
|
CSCD被引
1
次
|
|
|
|
20.
董万鹏. 增材制造工艺及热处理对Ti-6Al-4V合金组织和性能的影响.
航空材料学报,2022,42(6):22-32
|
CSCD被引
3
次
|
|
|
|
|