帮助 关于我们

返回检索结果

三维木头海绵-石墨烯/环氧树脂复合材料的制备及性能
Preparation and properties of epoxy composites reinforced by three-dimensional wood sponge-graphene

查看参考文献19篇

李岳 1,2,3   李炯利 1,2,3   梁佳丰 1,2,3   王旭东 1,2,3 *  
文摘 采用天然巴沙木作为原材料,进行选择性刻蚀,得到三维层状结构的木头海绵。以木头海绵为模板,在负载一定比例的还原氧化石墨烯(rGO)与石墨烯纳米片(GNP)后,通过真空浸渍的方法与环氧树脂复合并固化,制备得到石墨烯-木头海绵(G-WS)/环氧树脂复合材料。结果表明:采用真空浸渍的方法,能够成功使氧化石墨烯(GO)在水热还原的同时,带动GNP负载到木头海绵表面,同时GO被还原成为rGO,经过与环氧树脂复合后,在环氧树脂内部,G-WS仍然保持良好的三维结构,这种取向分层结构使复合材料具有导热的各向异性,三维连通的结构也为良好的热导率奠定了基础。当填料质量分数为1.45%时,沿取向结构方向的热导率能够达到1.59W·m~(-1)·K~(-1),相比于纯环氧树脂而言,热导率提升率高达457%。同时由于木头海绵内部层状的结构,赋予了G-WS良好的压缩回弹性能,能够实现80%压缩以及40%形变压缩,循环100次但不发生明显形变。
其他语种文摘 The selectively etch nature balsa wood,leading to a wood sponge with three-dimensional (3D)lamellar structure.After loading a certain proportion of reduced graphene oxide(rGO)and graphene nanosheets(GNP),the graphene-wood sponge(G-WS)/epoxy resin composite was prepared by vacuum impregnation and curing with epoxy resin.After loading graphene via hydrothermal reduction,graphene oxide(GO)is reduced to rGO.During the self-assembly of rGO sheets,GNP are wrapped and connected by rGO sheets byπ-πinteractions.Meanwhile,G-WS can also maintain the good 3Dstructure after vacuum impregnation.The lamellar structure inherited from the wood stock that can lead to anisotropic conductivity G-WS with epoxy resin,at loading of 1.45%(mass fraction, the same below),represents a high through-plane thermal conductivity of 1.59 W·m~(-1)·K~(-1), compared to the neat epoxy matrix,which is equivalent to a significant enhancement 457%of per 1% loading.The lamellar structure made the G-WS can achieve 80%compression and 40% deformation and compression cycles for 100times without significant deformation.
来源 材料工程 ,2023,51(9):200-207 【核心库】
DOI 10.11868/j.issn.1001-4381.2022.000260
关键词 石墨烯 ; 热导率 ; 环氧树脂 ; 石墨烯基复合材料
地址

1. 中国航发北京航空材料研究院, 北京, 100095  

2. 北京石墨烯技术研究院有限公司, 北京, 100094  

3. 北京市石墨烯及应用工程技术研究中心, 北京市石墨烯及应用工程技术研究中心, 北京, 100095

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 一般工业技术
基金 国家自然科学基金项目 ;  北京市科技计划项目
文献收藏号 CSCD:7574284

参考文献 共 19 共1页

1.  Huang X Y. Thermal conductivity of graphene-based polymer nanocomposites. Materials Science and Engineering,2020,142:100577 CSCD被引 20    
2.  Alam F E. In situformation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. Journal of Materials Chemistry A,2017,5(13):6164-6169 CSCD被引 15    
3.  Yang X T. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3dcopper nanowires/thermally annealed graphene aerogel framework. Composites Part A,2020,128:105670 CSCD被引 48    
4.  郭建强. 氧化石墨烯的化学还原方法与机理研究进展. 材料工程,2020,48(7):24-35 CSCD被引 6    
5.  Song P. Lightweight, Flexible Cellulose-Derived Carbon Aerogel@Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities. Nano-micro Letters,2021,13(1):91 CSCD被引 94    
6.  Feng Y Z. Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chemical Engineering Journal,2020,379:122402 CSCD被引 13    
7.  李岳. 石墨烯导热材料研究进展. 材料工程,2021,4(1):1-13 CSCD被引 1    
8.  Guo J Q. Rethinking the reaction pathways of chemical reduction of graphene oxide. Carbon,2021,171:963-967 CSCD被引 2    
9.  An F. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Applied Materials &Interfaces,2018,10(20):17383-17392 CSCD被引 29    
10.  Chen J. Cellulose nanofiber supported 3dinterconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Advanced Functional Materials,2017,27(5):1604754 CSCD被引 59    
11.  Qin M M. Efficiently controlling the 3dthermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Advanced Functional Materials,2018,28(45):1805053 CSCD被引 33    
12.  Yao Y M. Construction of 3d skeleton for polymer composites achieving a high thermal conductivity. Small,2018,14(13):1704044 CSCD被引 31    
13.  Hu J T. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of bn. ACS Applied Materials & Interfaces,2017,9(15):13544-13553 CSCD被引 45    
14.  Liu P F. 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness. Nano-micro Letters,2020,13(1):1-15 CSCD被引 43    
15.  Min P. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Advanced Functional Materials,2018,28(51):1805365 CSCD被引 29    
16.  Li Y. Construction of highly aligned graphene-based aerogels and their epoxy composites towards high thermal conductivity. Journal of Materials Chemistry C,2019,7(38):11783-11789 CSCD被引 11    
17.  Guan H. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano,2018,12(10):10365-10373 CSCD被引 49    
18.  Song J W. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano,2018,12(1):140-147 CSCD被引 18    
19.  Zeng X L. Ice-templated assembly strategy to construct 3dboron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small,2015,11(46):6205-6213 CSCD被引 50    
引证文献 1

1 李团锋 复合石墨双极板材料及性能的研究进展 材料工程,2024,52(2):102-111
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号