2050铝锂合金板材拉伸力学性能三维各向异性
Three-dimensional anisotropy of tensile mechanical properties of 2050Al-Li alloy plate
查看参考文献27篇
文摘
|
随着铝锂(Al-Li)合金在航空航天领域的应用愈发广泛,对其各向异性研究有助于Al-Li合金的进一步开发利用。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、电子背散射衍射(EBSD)等对T3态2050Al-Li合金板材进行显微观察,通过拉伸实验对合金板材轧制方向、垂直轧制方向、厚度方向的拉伸力学性能三维各向异性进行研究。结果表明:T3态2050Al-Li合金轧制板材轧向中间层强度最高,屈服强度为370MPa,抗拉强度为465MPa,而伸长率最小,为9.6%;合金板材横向表面层强度最低,屈服强度为325MPa,抗拉强度为431MPa,伸长率最高为19.2%。合金板材不同厚度层断口形貌、晶粒大小不同;2050Al-Li合金板材不同厚度层各向异性程度不同:0T(表面层)、0.25T(中间层)屈服强度和抗拉强度各向异性强,伸长率各向异性弱;而0.5T(中心层)屈服强度和抗拉强度各向异性弱,伸长率各向异性强。2050Al-Li合金板材不同厚度层各向异性主要由晶粒取向、织构引起,0T和0.5T厚度层最强织构类型均为{011}〈211〉黄铜织构。 |
其他语种文摘
|
With the increasing application of Al-Li alloy in the aerospace field,the study of its anisotropy is conducive to the further development and utilization of Al-Li alloy.Scanning electron microscope,transmission electron microscope,X-ray diffractometer and electron back-scattered diffraction were used to observe the microstructure of 2050Al-Li alloy with T3status.The threedimensional anisotropy of tensile mechanical properties of alloy plates was studied by tensile test.The results show that the strength of the rolling middle layer of 2050Al-Li alloy plate with T3status is the highest,the yield strength is 370MPa,The tensile strength is 465MPa,the elongation is the lowest at 9.6%.The transverse surface strength of alloy plate is the lowest,the yield strength is 325 MPa,the tensile strength is 431 MPa,and the elongation is the highest at 19.2%.The fracture morphology and grain size in different thickness of alloy plate are different.The grains in the surface region are thin and compact with small size,while the grains in the middle region are wide and flat with large size.The anisotropy of different thickness of 2050 Al-Li alloy plate is different:the anisotropy of yield strength and tensile strength in surface and middle region is strong,and the anisotropy of elongation is low,while the anisotropy of yield strength and tensile strength in central region is low,the anisotropy of elongation is strong.The anisotropy of different thickness of 2050Al-Li alloy rolled plate is mainly formed by the grain orientation and texture.The strongest texture type of surface area and central area is{011}〈211〉brass texture. |
来源
|
材料工程
,2023,51(9):97-106 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000432
|
关键词
|
2050Al-Li合金
;
轧制
;
力学性能
;
各向异性
;
织构
|
地址
|
1.
北京理工大学材料学院, 北京, 100081
2.
北京理工大学机械与车辆学院, 北京, 100081
3.
北京理工大学前沿交叉科学研究院, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7574273
|
参考文献 共
27
共2页
|
1.
Wu L. The effect of major constituents on microstructure and mechanical properties of cast Al-Li-Cu-Zr alloy.
Materials Characterization,2021,171:110800
|
CSCD被引
5
次
|
|
|
|
2.
冯朝辉. 铝锂合金研究进展及发展趋势.
航空材料学报,2020,40(1):1-11
|
CSCD被引
23
次
|
|
|
|
3.
李建军. 铝锂合金形变热处理工艺研究进展.
锻压技术,2021,46(11):1-10
|
CSCD被引
11
次
|
|
|
|
4.
李劲风. 铝锂合金及其在航天工业上的应用.
宇航材料工艺,2012,42(1):13-19
|
CSCD被引
61
次
|
|
|
|
5.
Zheng X. Analysis of microstructure and high-temperature tensile properties of 2060Al-Li alloy strength-ened by laser shock peening.
Journal of Alloys and Compounds,2021,860:158539
|
CSCD被引
3
次
|
|
|
|
6.
Dong H. Shear banding behavior of AA2099Al-Li alloy in asymmetrical rolling and its effect on recrystallization in subsequent annealing.
Materials Characterization,2021,177:111155
|
CSCD被引
4
次
|
|
|
|
7.
吴国华. 铝锂合金材料研究应用现状与展望.
有色金属科学与工程,2019,10(2):31-46
|
CSCD被引
18
次
|
|
|
|
8.
Roberto J. The evolution of Al-Li base products for aerospace and space applications.
Metallurgical and Materials Transactions A,2012,43(9):3325-3337
|
CSCD被引
181
次
|
|
|
|
9.
白晔彤. 高Li含量Al-Li合金的发展与强韧化途径.
热加工工艺,2021,50(14):12-16
|
CSCD被引
1
次
|
|
|
|
10.
Yang X. Achieving high strength and ductility of Al-Cu-Li alloy viacreep aging treatment with different pre-strain levels.
Materials Today Communications,2021,29:102898
|
CSCD被引
6
次
|
|
|
|
11.
Ali A. Strengthening mechanisms,deformation behavior,and anisotropic mechanical properties of Al-Li alloys:a review.
Journal of Advanced Research,2018,10:49-67
|
CSCD被引
77
次
|
|
|
|
12.
叶志豪. 一种2050铝锂合金薄板的微观组织与力学性能.
稀有金属材料与工程,2018,47(4):1192-1198
|
CSCD被引
7
次
|
|
|
|
13.
Li Q. The mechanical response and microstructural evolution of 2195Al-Li alloy during hot tensile deformation.
Journal of Alloys and Compounds,2020,848:156515
|
CSCD被引
9
次
|
|
|
|
14.
Ning H. Evolution of aging precipitates in an Al-Li alloy with 1.5wt% Li concentration.
Vacuum,2020,182:109677
|
CSCD被引
5
次
|
|
|
|
15.
Lu D. Effects of microstructure on tensile properties of AA2050-T84 Al–Li alloy.
Transactions of Nonferrous Metals Society of China,2021,31(5):1189-1204
|
CSCD被引
11
次
|
|
|
|
16.
Chen X. Microstructure evolution and mechanical properties of 2196 Al-Li alloy in hot extrusion process.
Journal of Materials Processing Technology,2020,275:116348
|
CSCD被引
6
次
|
|
|
|
17.
Prasad N E.
Aluminumlithium alloy,2014:139-163
|
CSCD被引
1
次
|
|
|
|
18.
王新华. 5083铝合金轧制板材的各向异性研究.
轻合金加工技术,2014,42(10):58-62
|
CSCD被引
3
次
|
|
|
|
19.
郝敏. 2060-T8E30铝锂合金平面各向异性和断裂破坏机制研究.
稀有金属,2021,45(6):641-649
|
CSCD被引
10
次
|
|
|
|
20.
Bunge H J. On-line determination of texture-dependent materials properties.
Journal of Nondestructive Evaluation,1993,12(1):3-11
|
CSCD被引
3
次
|
|
|
|
|