锂离子电容器正极材料的研究进展
Research progress of cathode materials for lithium ion capacitors
查看参考文献51篇
文摘
|
锂离子电容器是介于锂离子电池和超级电容器两者之间的储能器件,兼具高能量密度和高功率密度,被认为是最有前途的电能储存系统之一。本文总结近年来碳基和嵌锂型正极材料的研究进展,详细介绍碳基和嵌锂型电极材料的分类和改性方法。为提高锂离子电容器的使用性能,通过微观结构调控、表面修饰、掺杂改性及复合材料等手段进一步优化正极材料,进行正负极动力学匹配,综合提高其电化学性能。最后梳理出未来锂离子电容器正极材料的研究热点集中在对正极材料微观结构的调控优化、元素掺杂和表面改性以及与其他材料复合等方面,并指出未来发展方向在于优化碳材料的结构与组成、克服倍率和循环性能的限制以及开发在高压下更稳定的正极材料等。 |
其他语种文摘
|
Lithium-ion capacitors are energy storage devices between lithium-ion batteries and supercapacitors,which have both high energy density and high power density,and are considered as one of the most promising energy storage systems.In this paper,the research progress of carbonbased and lithium-embedded cathode materials in recent years was summarized,and the classification and modification methods of carbon-based and lithium-embedded electrode materials were introduced in detail.In order to further improve the performance of lithium-ion capacitors,researchers further optimized the cathode materials by means of microstructure regulation,surface modification,doping modification and composite materials,and carried out cathode and anode dynamic matching to comprehensively improve the electrochemical performance of lithium-ion capacitors.Finally,the research hotspots and development directions of cathode materials for lithium-ion capacitors in the future were reviewed in order to provide good electrochemical properties for the next generation of cathode materials for commercial applications. |
来源
|
材料工程
,2023,51(9):28-36 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000629
|
关键词
|
碳材料
;
嵌锂型材料
;
锂离子电容器
;
研究进展
|
地址
|
1.
华东理工大学, 绿色能源化工国际联合研究中心, 上海, 200237
2.
同济大学新能源汽车工程中心, 上海, 201804
3.
同济大学汽车学院, 上海, 201804
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
国家自然科学基金项目
;
国家科技支撑计划项目
;
同济大学中央高校基本科研业务专项资金
|
文献收藏号
|
CSCD:7574266
|
参考文献 共
51
共3页
|
1.
Braff W A. Value of storage technologies for wind and solar energy.
Nature Climate Change,2016,6(10):964-969
|
CSCD被引
15
次
|
|
|
|
2.
Kittner N. Energy storage deployment and innovation for the clean energy transition.
Nature Energy,2017,2(9):17125
|
CSCD被引
47
次
|
|
|
|
3.
Jin L M. Fabrication of dualmodified carbon network enabling improved electronic and ionic conductivities for fast and durable Li_2TiSiO_5 anodes.
Chem-ElectroChem,2019,6(12):3020-3029
|
CSCD被引
7
次
|
|
|
|
4.
叶成玉. 有机介质体系锂离子电容器.
化工进展,2019,38(3):1283-1296
|
CSCD被引
2
次
|
|
|
|
5.
Ma Y. Graphene-based materials for lithium-ion hybrid supercapacitors.
Advanced Materials,2015,27(36):5296-5308
|
CSCD被引
44
次
|
|
|
|
6.
Li B. Electrode materials,electrolytes, and challenges in nonaqueous lithium-ion capacitors.
Advanced Materials,2018,30(17):1705670
|
CSCD被引
46
次
|
|
|
|
7.
Jin L M. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors.
Energy Storage Materials,2019,23:409-417
|
CSCD被引
6
次
|
|
|
|
8.
Guo X. The influence of electrode matching on capacity decaying of hybrid lithium ion capacitor.
Journal of Electroanalytical Chemistry,2019,845:84-91
|
CSCD被引
4
次
|
|
|
|
9.
Shellikeri A. Hybrid lithium-ion capacitor with LiFePO_4/AC composite cathode-long term cycle life study,rate effect and charge sharing analysis.
Journal of Power Sources,2018,392:285-295
|
CSCD被引
7
次
|
|
|
|
10.
Jin L M. Exploiting a hybrid lithium ion power source with a high energy density over 30Wh/kg.
Materials Today Energy,2018,7:51-57
|
CSCD被引
3
次
|
|
|
|
11.
Jin L M. Toward high energydensity and long cycling-lifespan lithium ion capacitors:a 3Dcarbon modified low-potential Li_2TiSiO_5 anode coupled with a lignin-derived activated carbon cathode.
Journal of Materials Chemistry A,2019,7(14):8234-8244
|
CSCD被引
10
次
|
|
|
|
12.
Zheng J S. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.
Scientific Reports,2017,7:41910
|
CSCD被引
9
次
|
|
|
|
13.
Yao K. Influence of stabilized lithium metal powder loadings on negative electrode to cycle life of advanced lithium-ion capacitors.
Journal of the Electrochemical Society,2017,164(7):A1480-A1486
|
CSCD被引
5
次
|
|
|
|
14.
巩瑞奇. 锂离子电容器:理论、结构设计与应用.
电子元件与材料,2018,37(10):8-12
|
CSCD被引
2
次
|
|
|
|
15.
张晓虎. 锂离子电容器在新能源领域应用展望.
电工电能新技术,2020,39(11):48-58
|
CSCD被引
12
次
|
|
|
|
16.
Zhang L L. Carbon-based materials as supercapacitor electrodes.
Chemical Society Reviews,2009,38(9):2520-2531
|
CSCD被引
330
次
|
|
|
|
17.
Yang S. Corncob-derived hierarchical porous activated carbon for high-performance lithium-ion capacitors.
Energy &Fuels,2020,34(12):16885-16892
|
CSCD被引
1
次
|
|
|
|
18.
Kumagai S. Lithium-ion capacitor using rice husk-derived cathode and anode active materials adapted to uncontrolled full-pre-lithiation.
Journal of Power Sources,2019,437:226924
|
CSCD被引
3
次
|
|
|
|
19.
Zhang J. Mesoporous carbon material as cathode for high performance lithium-ion capacitor.
Chinese Chemical Letters,2018,29(4):620-623
|
CSCD被引
9
次
|
|
|
|
20.
Gao Y. Boosting capacitive storage of cathode for lithium-ion capacitors:combining pore structure with P-doping.
Electrochimica Acta,2021,368:137646
|
CSCD被引
4
次
|
|
|
|
|